Blockchain-based Service Network User Manual
Version 1.5.0

BSN Foundation

Blockchain-based Service Network User Manual

CONTENTS

I = 1S A\ 1 T 18 o £ o] o SRR 1
1.1 Bref INTTOQUCTIONoouiieieiiititeieet ettt sttt bbbt bt e et ebe st nee e 1

1.2 BSIN SBIVICES ..ecuteuiititeteieiesteste ettt te st ettt st te e st be st et et e st st e s b et e st et e sbenseneebe st esbeneenesbenbeeeneebesbeneenene 2
1.2.1 PermiSSIONEd SEIVICES. ...c.coiiterieieiirienteteie ettt ettt ettt ettt b st e et be st st se et ebesbesee e 2

1.2.2 PermiSSiONIESS SEIVICESccuirueieirierieieieie ettt sttt sttt st s ee ettt e st neebesbesbe e 2

1.2.3 INEEICNAIN SEIVICES . ..c.eiieiiitiitetetet sttt ettt sttt b et e bt e e 3

1.3 TEIMINOIOGIES ...ttt ettt b ettt e et b ettt e bt b et e e e st ebe st e e e e 3

2 REIEASE NOTES....c.uiitiitieiieteieste ettt sttt ettt et et et e s be e bt s bt e st e st et et e besbesbesbeeaeens 5
3 QUICK STAM . ..veeieeete ettt ettt ettt et e et e et e et e e e beeebe e beesabeeebeesaseeaseesasaenseesnseensseenteenseeenns 8
3.1 Permissioned BIOCKCNAIN.ccueiiiriiieieiiriestete sttt ettt e st e e snesbesseneas 8

3.2 Permissionless BIOCKCNAINc.oiiiiiiiiiieeese ettt bbb 9

3.3 DOCUMENTALION. ...ccuiteteiiitirietet ettt sttt sttt et st e st e te st ebesbe st et ese st e sbesseneesessesensesessessenseneesessenseneens 10

4 RegiStration and ACHIVALIONccooiririeieieierese sttt sb e b e eas 11
Ot (=0 11 LA T o TSR 11

A2 OGN ittt ettt ettt sttt st et en e R ke A et e Rt ket e be st e Rt e te b e tentebeetebenteneebesrenteneas 13

4.3 FOIQOt PASSWOITeeieeieiiriieieeteie e te ettt e e te e s e eae st e sseese e sesteeseensessesseessensesesseessensessesseensensens 14

5 PermiSSIONEU SEIVICESccueeiieeieiieiesieesieeteete e e tesaee e eaesreestessesseesseessesseesteensesseenseensesneenses 16
5.1 OVEBIVIBW. ..ttt ettt h et a e bt e e e st b e e b e b e e e bt e b et et en e e bt s b et et e bt e be et et eneebesbenbentne 16

5.2 BSN Keys and Certificates MEChANISIM..........ccoiiiiiiieiiciecieeecece ettt 17
5.2.1 BSN Keys and Certificates MeChaniSMcccocveeeverisinieneseseeeesese e 17

5.2.2 Locally generate the DAPP aCCESS KEY PAITcvecveevieiiiiiiiticiesiesteete ettt 18

5.3 DApp Services Publication and PartiCipation............cceccevereecierenieseeseseseeeeese e eee e see e 19
5.3 OVEIVIBW .ttt sttt b e bbbt bbb et b s b et et e bt b et et e neebe e e b e e ne 19

5.3.2 DAPP Services PUBIICALIONcceeieiiiiiiceeeece ettt 19

5.3.3 DAPP Services ManagemeNtccecerereerierierieeeesiesiesseeeessessesseessessessesssessessessessesssessens 26

5.3.4 DAPP Services PartiCiPation...........cceieiieieiieiiicieeeeetesie et este st sreeeesreste e esresbesveersesenrens 29

5.4 Off-BSN SYStEM ACCESS GUITR......ccueeierieitieeteteste st etete et et e te e e et este e seebestesteessessessesseessessenes 35
BUAL OVEIVIBW ...ttt ettt b ettt b ekt e st stk et b et e st et eb et et et ene et e e etens 35

5.4.2 BSN Smart Contract Package ReqUIrEMENLScccverveiririrnieieisieneeeeseseeeeesee s 39

5.4.3 PCN Gateway FaDIiC APc.ooieieeeeseeeees ettt st sneenaese s 44

5.4.4 PCN gateway FISCO AP ..ottt ettt st st st 67

5.5 Development SDK and EXAMPIESc.ccviieieiieriirieeiesese e etese et este et sseeaeste e ssesessesseessessenes 91

Blockchain-based Service Network User Manual

55.1 BSN Gateway SDK EXaMPIE ...c.oiuiiieieiieeeee ettt e 91

55.2 Off-BSN SyStem EXAMPIESccveveieieieiieeieesieste ettt see e seeesaesse e sneenaensens 92

5.6 BSIN TESINEL SEIVICESeitiitiieieiietistete ettt ettt ettt ettt e et be st et et e sesbe st e s eneenesbesbeneene 92
B.B. 1 OVEIVIBW ..ttt ettt ettt ettt ettt b e st e st et e st et e sb et ene et e st e s b et ese et e st enteneebeseenseneene 92

5.6.2 Permissioned DApPP Service PUBIICALIONcocveierieriiieiesesescee e 92

5.6.3 Interchain Services 0N BSN TESINELcccivereiririeieeeree e 94

6 DediCated NOUE SEIVICESoeueeieeieriierieete ettt sttt st s esteestesseesbeeneesseenseensesaeeneas 95
B.1 OVEBIVIBW....iueeieetititet ettt ettt et a e bbbt e b b et e bbb e e e st e bt s b et et e bt et et et eneebesbenbenene 95
8.2 AR PrOJECES ...uetiteeeiiete sttt sttt sttt b e s b et et e st st e st et e st ebe s b et et e st s be st et eneebe st eneeneene 95
TR B o [o 0] 1= od £SO 97
T B T 1= (= o 0] 1= o 3SR 98
6.5 VIEW PrOJECE DELAISc.eoviieieieiietisiee ettt sttt sttt st et enesbesbenens 98
6.6 UNSUDSCIIDE PrOJECES.iiviieieeeiise ettt sttt se et estesne e e e sesteeneensensenes 99
6.7 Edit AUINOTIZEA ACCOUNTeveeieeieteteie ettt sttt sttt e et ebesbesteneenesbesteneenes 100
7 PErmMISSIONIESS SEIVICESveeuiieeiitieieeiesteeste et e steetesaeesteeaesseesteenaeseeesseesesseesseensesseenseensens 101
T.L OVEBIVIBW...inietiietet ettt b ettt h e s bt ea e bt e e e st e bt et et et e bt ek e st e e e st e b e st et et ebeebesbeneens 101
7.2 SEIECE PIANS ...ttt sttt st et e e ae bt ettt st e ae st eneetententenes 101
7.3 Create antd Manage PrOJECES.......ccuiirerieiriirierieieestenie et te et te et steeenesbesbesaeneesestestensenes 104
7.4 Off-BSN SYStEM ACCESS GUITR......ecueeieriirieeiesieseeteeteseste et ete s e te e e stesseeeessestesseessessesseessensenees 106
TAAL OVEIVIBW ...ttt ettt b ettt st b bbb et b etk e et e e bbb et e e ebene 106

TA.2 EENEIEUM .ottt b et b et b e e et b st e b et ebesbe st e e enis 107

T3 EOS e b bbbttt ettt 108

TAL NEIVOS ..ottt r e s bt r e r e s 108

38 T V1 = TSRS 109

TA.D TOZOS ettt e 109

TAT TRISNEL .ottt ettt s ettt e s e s e e et et e s e s e e s esntesenenennnatas 109

TA8 OFUSE-OS ...ttt etttk b bbbt e et a e 110

T4 SOIANA. ..ttt bbbttt b et eaene 111

A LT 4 =T] oo RS 111

0 R Y [0 o] -3 Vo RS RPROR 112

A = I S PPP 112

7413 08SIS NEIWOTK.iiitiiieiiee et etttk 113

TALA POIKAAOT ...tttk ettt b ettt e et be et e e ebene 113

A O T o= USSP 114

Blockchain-based Service Network User Manual

TAALB FINOOTA ..ctieeieiieieeiee ettt sttt et et b e st e st et ese st et et e st e be st e ntentenesbessensens 115

TAALT N ettt s r e Rt r e Rt r e r e e n e e re e 115

8 INTEICRAIN SEIVICESottt sttt sb e b s ne e 117
8.1 Interchain Service ManagemENTc.ccoviririeririreriee ettt st s sae e st eeeens 118
8.1.1 Open INErChAIN SEIVICEScevvirieeeieieriesieeeerieste st ste e ste e steste e sseesestesteeeensessesseensensenes 118

8.1.2 View INEIChaIN SEIVICESccueiiiiiiieieierieeeeet ettt 119

8.1.3 Deactivation and Activation of Interchain Services...........ccoevevvinenenneneneeeeree 121

8.2 Interchain Services based 0N POIY ENTEIPriSEccvceeverereeieiereseeeee e eeeste e sae e sreeaeneeseas 122
B.2. 1 OVEIVIBW .ttt ettt ettt ettt st et et e be st e st et e st st e b et eneebe st et et ene et entensens 122

8.2.2 Interchain Services based on Hyperledger FabriC..........cccceveriiniriienennneecierereseees 123

8.2.3 Interchain Services based on FISCO BCOS.........cccooeiiiininiereeeeneseeeee s 124

8.2.4 Interchain Services based on Ethereum ROPSEENccveiverierieirinienieeeeseerieeeee e 124

8.2.5 Interchain Services based 0N Neo TESINELcccivirieririreneereeeee s 126

8.3 Interchain Services Dased ON TRITA ...ttt sttt b ens 128
B.3.L OVEIVIBW .ttt ettt bt et b e b et et e bt et e b et et b e b et et ebe st et et enis 128

8.3.2 Interchain Architecture based 0N IRITA ... 128

8.3.3 Interchain Services in BSN TESINELcccciverieiririeieeeesereeeese et 129

8.3.4 Interchain Services based on Hyperledger FabriC..........ccccevevivrieceenininseeerese e 134

8.3.5 Interchain Services based on FISCO BCOS. ..o 136

O ACCOUNT MANAGEMENToiiiiiieeiieeie ettt ettt ettt e et e st e e beesabeebeesaeesnbeesaeeenseesanas 140
10 ONIINE DOCUMENTALIONevieiiieiieiieietet ettt s eb ettt s et st s ebe e 141
L1 CONEACE US...eeiiieieeeeeeee ettt st b ettt b et st sb e b et e nbeeresane e 143

Blockchain-based Service Network User Manual

Preface

Blockchain-based Service Network (BSN or Service network) is a worldwide
infrastructure network that provides a one-stop-shop solution for blockchain and
distributed ledger technology (DLT) applications (DApp). BSN is a complex system
that involves programming, software development, resource and environment
configurations, application deployment, gateway APIs, local SDK, key certificates, etc.
To facilitate utilization, BSN International (www.bsnbase.io) has prepared this
document for developers and users to learn how to use BSN. We hope that BSN will
become the first choice for developers to develop and run their DApps.

BSN provides developers three types of services: Permissioned, Permissionless, and
Interchain services.

Permissioned services are divided into two parts. The first part demonstrates how
developers can deploy smart contracts to the selected public city nodes through the BSN
portal; the second part describes how developers can connect their off-BSN systems to
the corresponding smart contracts through the public city node gateway and conduct
data transaction processing.

Permissionless services determine how developers can choose the appropriate public
city nodes, plans, and public chain frameworks, to deploy and publish their DApps.

BSN's "Interchain Communications Hub™ (ICH) integrates two interchain solutions
based on relay chain mechanism: Poly Enterprise developed by Onchain and IRITA
developed by Bianjie Al. It enables cross-chain interoperability between standard
permissioned chains, open permissioned chains and public chains. We will continue to
integrate more cross-chain protocols to achieve interoperability of all blockchains
adapted to the BSN.

Please feel free to contact us if there are any further questions. Our contact information
can be found in Chapter 10. Contact Us. We strongly recommend users access the
Online Documentation section to explore BSN technical details further.

Blockchain-based Service Network User Manual

1 BSN Introduction

1.1 Brief Introduction

The BSN design and concept as taken from the Internet, is a connected set of devices
across data centers using the TCP/IP protocol. BSN is formed by the connection of the
public city nodes using a set of blockchain operating environment protocols. Just like
the Internet, BSN is also a cross-cloud, cross-portal, cross-framework, global
infrastructure network.

With BSN, there are three types of participants: cloud service providers, blockchain
framework providers, and portal operators.

Cloud service providers, through the installation of free BSN public city node software,
can make their cloud service resources (computing power, storage, and bandwidth)
accessible and sell through BSN to end-users.

Blockchain framework providers align with the BSN’s framework adaptation standards
and deploy them on BSN so developers can use it to develop and deploy applications.
The Permissionless service only applies to the BSN international portal and
international public city nodes.

Portal operators can easily and quickly build a Blockchain as a Service (BaaS) platform
on their existing websites using BSN APIs. This allows them to provide BSN
capabilities to their end users without users leaving their websites.

BSN is an open network that any cloud service provider, framework provider, or portal
operator, that complies with BSN requirements and standards is free to use and stop
using the service network at any time.

Similar to the Internet, most users of BSN are developers and technology companies.
They can use any BSN portal to purchase cloud resources that charge based on
transactions per second (TPS), storage gquantity, and bandwidth from any public city
node around the world. They select any pre-adapted framework to conveniently
develop, deploy, and manage permissioned blockchain applications at a very low cost.
Blockchain developers only need to deploy the application to one or more public city
nodes on BSN so participants can connect to the application at no cost through any
public city node gateway. All deployed applications share server resources in every
public city node. For high-frequency applications, public city nodes can intelligently
allocate a dedicated peer node with high processing capacity. For low-frequency
applications, they share the same peer node. This resource-sharing mechanism allows
BSN to reduce the resource cost to one-twentieth of the cost of traditional blockchain
cloud services.

BSN is a blockchain infrastructure network. Just as households do not need to dig their
own wells, but instead, enjoy the water supply services provided by public water plants
in cities, BSN blockchain application publishers and participants do not need to buy
physical servers or cloud resources to build their blockchain operating environment.

1

Blockchain-based Service Network User Manual

They use the public services provided by BSN and rent shared resources as needed, thus
greatly reducing their costs. According to recent research, it takes about 20,000 USD
per year for developers to build and deploy a traditional permissioned blockchain LAN-
type environment. However, with BSN, the minimum cost to run such an application is
as low as one dollar a day. Cost is a huge factor and will encourage a large number of
small, medium, and micro enterprises and even individuals (including students) to
innovate and start businesses through BSN. This will undoubtedly promote rapid
development and popularization of blockchain technology. In general, the development
from the closed architecture of the traditional blockchain to the resource-sharing
architecture of BSN completely mimics the development process of the Internet, which
gathered numerous isolated LANSs in the early days to the global connectivity facilities
we have today. We hope to make BSN the blockchain Internet.

1.2 BSN Services

As mentioned above, BSN provides a one-stop-shop solution for developers to deploy,
operate, and manage DApps. BSN provides three types of services: Permissioned,
Permissionless, and Interchain services.

1.2.1 Permissioned Services

BSN is continually adapting most of the mainstream permissioned blockchain
frameworks. On the BSN portal users can deploy DApps on any public city nodes based
on the type of selected framework and the number of peer nodes. The number of peer
nodes per application can be up to 60 and can be distributed among public city nodes
based on different cloud services. Users can easily complete the DApp deployment
process by uploading smart contracts and configuring the corresponding parameters.
This service mode allows developers to focus on business innovation, smart contract
programming. All work related to environment construction, system maintenance,
application deployment, node transmission, and network configuration is done by BSN.

The pricing strategy for the Permissioned service is based on three resource elements
of each peer node of the published application. The three elements are TPS, storage,
and data traffic. Among them, TPS and storage in the BSN portal are pre-paid, while
data traffic will be charged based on actual usage. This pricing strategy is designed to
minimize resource costs and provide users with the best services. Based on the data
provided by the BSN portal, if a user deploys a three-peer Fabric DApp, and each peer
node supports 10TPS and 10GB storage capacity, the monthly fee is only 20 USD.

1.2.2 Permissionless Services

The Permissionless service is only applicable to the BSN international portal
(www.bsnbase.io) and international public city nodes. Compared with the complexity
of the Permissioned service, Permissionless service has the virtue of simplicity. The
Permissionless service mainly provides developers who develop public chain DApps,
with unified access service covering numerous public chain nodes. Developers may
choose different plans on the BSN portal, and can simultaneously deploy DApps and
process transactions on all BSN adapted public chain nodes through the selected public
city nodes.

Blockchain-based Service Network User Manual

We offer a free plan and different premium plans. The free plan includes up to 2,000
requests per day. There are 3 types of premium plans, priced at $20, $100, and $500 per
month. The premium plans include up to 40,000 requests, 250,000 requests, and
1,500,000 requests, respectively, per day. All requests can be assigned to any public
chain freely.

Permissionless services only provide shared nodes and access environments and do not
involve any business of the public chain itself. The gas fees incurred in publishing and
running DApps on any public chain shall be borne by the developers themselves and
have nothing to do with BSN.

1.2.3 Interchain Services

The vision of BSN is to become the Internet of blockchains. In the future, millions of
DApps will be deployed and run on BSN. Both Permissioned and Permissionless
DApps will be very easy to call and they can interact with each other just like
applications currently do on the Internet. From this perspective, Interchain will become
a very core part of the BSN technical architecture.

The BSN’s “Interchain Communications Hub” (ICH) is now commercially available
and integrates with Onchain's Poly Enterprise and Bianjie’s IRITA cross-chain
solutions. It supports cross-chaining between permissioned chains and cross-chaining
between permissioned chains and ETH Ropsten testnet and NEO testnet.

A demo version of ICH is also live on the BSN Testnet, integrating two interchain
solutions based on the relay chain mechanism: (1) Poly Enterprise developed by
Onchain and (2) IRITA developed by Bianjie. We welcome all developers to try out
and provide feedback and suggestions to us and we will continue to improve the
interchain functionality.

BSN's "Interchain Communications Hub™ (ICH) integrates two interchain solutions
based on relay chain mechanism: Poly Enterprise developed by Onchain and IRITA
developed by Bianjie. It enables cross-chain interoperability between standard
permissioned chains, open permissioned chains and public chains. We will continue to
integrate more cross-chain protocols to achieve interoperability of all blockchains
adapted to the BSN.

1.3 Terminologies

® Public city node (PCN): This is the core element of BSN but the “node” part
doesn’t refer to the blockchain nodes and BSN isn’t a blockchain. With BSN, each
PCN is a virtual data center used to allocate a portion of resources from the cloud
service or data center on which it was deployed. An entire blockchain operating
environment has been built within this resource pool and includes multiple
blockchain frameworks, shared peer nodes, CA management, authority chain, PCN
gateway, and PCN manager systems.

® DApp: This is a generic term for blockchain and distributed ledger technology
application.

® DApp Service or Service: This is a DApp that is already deployed and in use on

3

Blockchain-based Service Network User Manual

BSN that users can access with an invitation from the DApp publisher. The
invitation allows them to directly join and use the service.

® Service Publisher: This is the individual or enterprise who published and deployed
the DApp service on BSN and is responsible for granting access to users who apply
to participate in the service.

® Service Participant: This is a user that uses the BSN DApp service via a BSN
portal or the publisher’s system. Also, the user’s off-BSN system can connect to the
DApp service via the PCN gateway to execute transactions and query data.

® Off-BSN system: A business IT system developed and managed by a DApp service
publisher or a service participant outside BSN.

Blockchain-based Service Network User Manual

2 Release Notes

Release date | Version | Notes

e |terative optimization and technical optimization of the BSN
international website (www.bsnbase.io) to enhance user
experience.

2021/04/30 150 |° Launched BSN dedicated node services based on ConsenSys
Quorum framework.

e Launched the commercial service of Interchain
Communications Hub based on IRITA.

e Fixed some bugs and enhanced the stability of the system.

e Added public chain main net and test net nodes along with

2021/03/19 14.1 native API access services. Including: Casper, Findora and
Near.

e Iterative optimization and technical optimization of the BSN
international website (www.bsnbase.io) to enhance user
experience.

2021/01/31 14.0 e Launched the commercial service of Interchain
Communications Hub based on Poly Enterprise.
e Fixed some bugs and enhanced the stability of the system.
e Added public chain main net and test net nodes along with
2020/11/30 131 native APl access services. Including: BTY, Oasis and
Polkadot.

e Optimized the BSN International website (www.bsnbase.io)
to improve user experience.

e Launched BSN Permissioned Blockchain Testnet, providing
developers with a free testing environment supporting:
Hyperledger Fabric R1, FISCO BCOS K1 DApp Services
publication
-Interchain testing services

2020/10/31 130 e Launched the BSN Interchain Communications Hub on BSN
Testnet based on Poly Enterprise and IRITA.

e Added the BSN empowerment platform APIs to allow third-
party portals to access BSN Permissionless Services.

e Added the TPD (Transactions Per Day) limit control function
in the Permissionless Services

e Fixed some bugs and enhances the stability of the system.

e Updated the BSN Global website address to
https://www.bsnbase.io.

e Added public chain main net and test net nodes along with

2020/9/24 121 native XPI access services. Including: Algorand, ShargeRing
and Solana.

e Added Enable Key function in the public chain project.

e Redesigned the user interface toprovide better navigation and

2020/8/10 1.2.0 user experience.

Added public chain main net and test net nodes along with

5

Blockchain-based Service Network User Manual

native API access services. Including: Nervos, Neo, ETH,
Tezos, EOS, IRISnet, etc.

Added commercial functionality for Hyperledger Fabric and
FISCO BCOS frameworks.

Updated FISCO BCOS framework to support SECP256 K1
encryption algorithm.

Added the following functionality to Permissioned services:
recurring payment mechanism for service charge and data
usage charge, service configuration upgrade.

Added Permissionless service plan purchase and upgrade.
Added "My Account™ in User Center to make it easier for users
to update credit card information, check bills, pay bills and
download invoices (we process all credit card activities
directly on Stripe).

Added Online Help Manual to provide developers and portal
users easy-to-follow instructions.

Added PCN gateway SDK and all examples on Github:
https://github.com/bsnda.

Fixed a few bugs to enhance the stability of the system.

2020/4/25

1.1.0

The BSN global portal has officially launched. Beta testing
will be held from April 25", 2020 to June 25", 2020.
Developers can deploy one three-peer DApp (service) at up to
three public city nodes (PCNs) free of charge during beta
testing.

There is a total of 10 available PCNs during beta testing. They
are deployed on AWS, Microsoft Azure, Google Cloud, China
Mobile Cloud, and Huawei Cloud.

During beta testing, there are two frameworks to choose from,
Hyperledger Fabric V1.4.3 or FISCO BCOS V2.4.0.
Developers can choose “Key Trust Mode” or “Public-Key
Upload Mode” to manage their service users’ certificates and
keys.

Basic information and chaincode/smart contracts in deployed
services can be modified anytime. PCNs, however, cannot be
changed once chosen.

Published services are private by default. Developers will need
to apply for a public listing. After approval, they will be
available on the App Store.

Developers will need to grant permissions to other users to
participate in their services. The participants then follow the
services’ instructions to generate service access keys and user
transaction keys by using either “Key Trust Mode” or “Public-
Key Upload Mode”.

The PCN gateway provides a set of user registration APIs for
deployed services. Developers can register service users via
these APIs from their off-BSN systems. Developers do not
need to log in to the BSN global portal.

6

https://github.com/bsnda

Blockchain-based Service Network User Manual

e The PCN gateway APIs support “Key Trust Mode” for both
Fabric and FISCO BCOS. “Public Key Upload Mode” is only
supported for Fabric.

e For more info on gateway APIs, please refer to the developer’s
manual.

Blockchain-based Service Network User Manual

3 Quick Start

3.1 Permissioned Blockcha

Servic

Crea

Define f

Select the

deploy

Public Key U pload Mode

the

, test data and
ure data to BSN)

Participat
u Publ

zip file contains g
rtificates only, Dapp
pa

Permissioned DApp

Select Certificate Mode

Pay bills, submit for
approval and publishing

in

e publisher

te aNew

uni
roles

ity
the serv

Key Trust mode

Participat

Part
published Service

ipate in my

SEV

Key Trust Mode(Apply to

ion successful
isher approval

Blockchain-based Service Network User Manual

Permissioned DApp Service publishers can create DApp services in the BSN portal. To
create the service, it is necessary to upload the smart contract/chaincode package, define
the service functions and roles, select the public city nodes and select the participant
certificate mode (including Key Trust mode and Uploaded Public Key mode). After
that, publishers pay the bills and submit the service deployment request to the network
operator for approval and publishing.

After the successful publication of the service, publishers can participate in their service
or invite other users to participate in the service. To participate in the service,
participants should select designated roles and the access public city node, then generate
the certificates according to the certificate mode set by publishers. Participation will be
successful after being approved by service publishers.

Once successfully participating in the service, participants can download the certificate,
and use the certificate and service access configuration parameters to access the
chaincodes/smart contracts through the gateway API.

3.2 Permissionless Blockchain

o
b

Permissionless blockchain visitor

Select A Public City Node

l Select a Plan

Free Plan

Basic/Professional/
Enterprise/Custom Plan

Create projects

Obtain the project ID,
project key and access
address

Connect to the PCN
gateway to access the
selected public chain
nodes

Blockchain-based Service Network User Manual

Permissionless services allow visitors to select public city nodes and plans to participate
in a service. There are 2 types of plans, the free plan, and premium plans. Visitors can
choose plans according to their business requirements. To connect to the public chain
nodes, users can create projects to obtain project I1Ds, project keys, and access addresses
to access the public chain services.

3.3 Documentation

The direct users of the BSN portal are developers. As the environment and tools of the
blockchain application's development, deployment, and operation, BSN is relatively
complex in its overall operation. We strongly recommend that all developers start by
examining the documentation and examples so that they will be able to master the use
of BSN within a day or two.

For your convenience, all examples we've provided are available on Github. We hope
that developers with serious interest can help us optimize and enrich the examples so
that other developers are able to adapt and learn about blockchain development.
Developers who share their samples, will receive small gifts and be invited to BSN's
internal technical seminar.

For links to all documents and examples, please visit Chapter 9. Online Documentation.

10

Blockchain-based Service Network User Manual

4 Registration and Activation

BSN requires its users to register and confirm their registration before they can access
the network to carry out services and actions across the network. As a first-time user,
follow these steps to register:

4.1 Registration

1. Click here to access the website at www.bsnbase.io.

2. With the blockchain-based service network, you can access the system either as an
Individual or a Corporate entity.

3. Toregister as an Individual, enter or select the following:

e Username — Enter a preferred username

e Nationality — Click the dropdown to select your country from the list of
countries

e Name — Enter your real name, different from the username
e Mobile Number (Optional) — Enter your mobile number
e Email address — Enter an email address you have access to

e Brief description of your programming experience (Optional) — If you have
some experience in programming, we would love to hear about it

e Check the I have read and agree to Terms of User and Privacy Policy box
e Click Confirm to finish the registration.

Eam Blockchain-based
Service Network

Create an Account

Username *

© Individual Corporate
The username consists of 6-25 characters, including letrers and numbers.

Name *
China

Email Address * Mobile Number

Brief description of your Programming Experience

have read and agreed to Terms of Use and Privacy Policy

Go Back

11

https://www.bsnbase.io/

Blockchain-based Service Network User Manual

4. To register as a Corporate entity, enter or select the following:

Username — Enter a preferred username

Nationality — Click the dropdown to select your country from the list of
countries

Enterprise Name — Enter the legal name of your corporate body or company
name

Detailed Address — Enter a verifiable address of the company location
Contact Name — Enter a contact name that represents the company
Mobile Number (Optional) — Enter your corporate mobile number
Email address — Enter a corporate email address that you have access to

Brief description of your programming experience (Optional) —If you have
some experience in programming, we would love to hear about it

Check the I have read and agree to Terms of User and Privacy Policy box
Click Confirm to finish the registration.

Create an Account

Username *

Individual @ Corporate
The username consists of 8-25 characters, including letters and numbers.

Enrerprise name *
China

Detailed Adress *

Contact Name *

Mobile Number

Email Address *

Brief description of your Programming Experience

=

have read and agreed to Terms of Use and Privacy Palic

12

Blockchain-based Service Network User Manual

5. A confirmation dialog box will be displayed confirming your registration. Click
Go to Dashboard.

Successfully Submitted

Your application has been submitted and a
confirmation email has been sent to you, please
click the link in the email to proceed.

| Go to Dashboard |

You will receive an email from BSN requesting that you confirm your registration.

Click on the link in the email to confirm your registration and enter your Password
and Password Confirmation.

8. Click Confirm when done to return you to the login page.

4.2 Login

After you have successfully registered your account on BSN, you can login by
following these steps:

1. Click onthe Login link to access the login page.

2. On the login page, enter the Username/Email, Password, and the Verification
Code.

3. Click Sign Into access the Home page.

13

https://global.bsnbase.com/main/index?type=login

Blockchain-based Service Network User Manual

EE Blockchain-based
Service Network

Login into Account

Username/Email address

retailer

Password Forgot Password?

Captcha

Captcha N } \\ﬁ\ \y

Sign In

Don’t have an account? Create Account

4.3 Forgot Password

If at any time you have forgotten your password, you can follow these steps to retrieve
it:

On the Login page, click the Forgot Password to open the forgot password page.
2. On the page, enter the correct account or email.

3. Inthe verification code, enter the displayed code. If you wish to generate another
code, click on the code to generate another.

Forgot Password
Fill in the correct Account or Email

carlos_lastres@gmail.com

Verification Code

“BxFQUX

Go back

Blockchain-based Service Network User Manual

4. Click Next to view the Authentication page.

5. On the Authentication page, click the Send button to get verification code. This
will generate a code that will be sent to your registered email address.

Eam Blockchain-based
Service Network

Forgot Password

For the security of your account, you need to verify your identity

Verification Code

Enter the code that was received in your mailbox and click Next.

On the reset login password page, enter your New password and Confirm
password.

8. Click Confirm to change your password.

15

Blockchain-based Service Network User Manual

Em Blockchain-based
Service Network

Set your new login password

Choose your account

bi***n5

New Password

Password

Confirm the new password

assword

Go Back

5 Permissioned Services

5.1 Overview

The Permissioned service is one of the core services provided by BSN. Its goal is to
make it easy for developers to publish decentralized applications (DApps) based on the
framework of the permissioned blockchain on their selected public city nodes.
Compared with the permissionless blockchain DApp, the permissioned blockchain
DApp is more flexible in terms of architecture design, operation efficiency, and smart
contract programming. It also has a larger space for innovation. However, from the
perspective of development, because the developers need to build their underlying
environments, and the environment for the public chain is readily available, the
development, operation and maintenance of the permissioned chain DApp are relatively
difficult. The developer's off-BSN system can access to DApp for data processing
through the BSN public city node gateway.

Although BSN has greatly reduced the difficulty of permissioned blockchain DApp
development, developers still need to have an in-depth understanding of the following
three aspects which will be explained in detail in the following chapters.

1. Keys and Certificates Mechanism: the blockchain application itself is based on
encryption algorithm technology, so the requirements of the keys and certificates
are very high.

2. DApp services publication and participation: To build a permissioned blockchain
DApp, the developer should firstly set up the chain and deploy the smart contracts.
This part is entirely carried out on the BSN global portal (www.bsnbase.io),
including the operations of smart contract upload, certificate mode selection, role's
permissions setting, peer node configuration, public city node location, etc. Finally,

16

Blockchain-based Service Network User Manual

developers need to upload or download keys to facilitate the access from off-BSN
system.

3. Off-BSN system access: This part contains a detailed description of the access
parameter configuration, SDK usage, and the description of public city node
gateway APIs to which the off-BSN systems connect. The API section includes all
APIs of the currently permissioned blockchain frameworks that BSN has adapted.

5.2 BSN Keys and Certificates Mechanism

5.2.1 BSN Keys and Certificates Mechanism

Once a publisher deploys a permissioned DApp on BSN, the off-BSN systems of all
participants (including the publisher) connects to the DApp via the PCN gateways to
execute and record transactions based on the DApp’s smart contracts. During this
process, the participants need two key pairs to complete all steps: the DApp Access Key
Pair and User Transaction Key Pair. When publishing and deploying a DApp on BSN,
its publisher can choose from two modes to manage the DApp’s keys and certificates:
Key Trust Mode and Public Key Upload Mode. The key trust mode means that the two
key pairs and related certificates will be generated and hosted by BSN when a
participant joins the DApp. The participant can then download the private keys from
the BSN portal, and use them to access BSN and sign transactions sent to the DApp
from the off-BSN systems. The public key upload mode means that the two key pairs
will be generated and stored locally on the participant’s off-BSN system, and the public
key is uploaded via the BSN portal or PCN gateway API, to BSN to generate the
certificates. Once a mode is selected for the DApp, it cannot be changed. We strongly
suggest all developers use the public key upload mode which is much more flexible and
secure.

1. DApp Access Key Pair based on Key Trust Mode: DApp access key pair is used
to generate the certificate to access the PCN gateway. If the DApp is on Key Trust
Mode, the key pair can be generated on the BSN portal, and the private key can be
downloaded. Please refer to the BSN Help Manual’s service participation section.

2. User Transaction Key Pair based on Key Trust Mode: User transaction key pair is
used to verify the requests and transactions sent to the DApp. If the DApp is on
Key Trust mode, the key pair can be generated via the PCN gateway APIs by
executing requests from the off-BSN systems. If the off-BSN systems have sub-
users, it can even generate different key pairs for different sub-users. Refer to the
APl sections in this document for Hyperledger Fabric and FISCO BCOS
frameworks to see how to generate the key pairs and use them to verify the
transactions.

3. DApp Access Key Pair based on Public Key Upload Mode: In this mode, the DApp
access key pair is generated and stored locally. The participant must upload the
public key to BSN via the BSN portal to generate the access certificate to the PCN
gateway. Please refer to section 5.2.2 below to see how to generate the key pair
locally. Please refer to the “Public Key Upload” section of this document to learn
how to upload the public key to BSN via the portal.

4. User Transaction Key Pair based on Public Key Upload Mode: In this mode, the

17

Blockchain-based Service Network User Manual

user transaction key pair is also generated and stored locally. Instead of using the
BSN portal, the user transaction public key (one of the pair) is sent and registered
on BSN via the PCN gateway certificate registration API. If the off-BSN systems
have sub-users, they can also upload different public keys to generate different
transaction certificates for different sub-users by using the API. Please refer to
section 5.2.2 or the instructions inside the gateway SDK package about generating
the key pair locally. Refer to the API sections in this document for registering the
certificate via gateway APIs.

Please click the link to download the PCN Gateway SDK Package:

https://github.com/BSNDA/PCNGateway-Go-SDK

https://github.com/BSNDA/PCNGateway-Java-SDK

https://github.com/BSNDA/PCNGateway-PY-SDK

https://github.com/BSNDA/PCNGateway-CSharp-SDK

Currently, both permissioned frameworks Hyperledger Fabric and FISCO BCOS
DApps support both Key Trust Mode and Public Key Upload Mode.
5.2.2 Locally generate the DApp access key pair

If the DApp service you participate in adopts Public Key Upload Mode for its
application access key, you will need to generate the pair of public and private keys on
the local client then save the private key locally and upload the public key to BSN via
the portal.

It is recommended to use the latest version of OpenSSL to generate the keys.
Please use the prime256vl cryptographic algorithm for Hyperledger Fabric
andsecp256k1 for FISCO BCOS. The steps are as follows:

1. Preparation: Download the latest version of OpenSSL
from https://www.openssl.org/source/ and create a data.txt file in which some test
phrases are entered, such as - Hello world.

2. Input "OpenSSL" in the terminal to show the open SSL command line.
OpenSSL>

3. Input the command - "ecparam -name prime256v1 -genkey -out key.pem™ to
generate a private key file key.pem.

OpenSSL> ecparam -name prime256v1 -genkey -out key.pem

4. Input the command - "ec -in key.pem -pubout -out pub.pem" to generate a public
key file pub.pem with the private key in the key.pem file.

OpenSSL> ec -in key.pem -pubout -out pub.pem
read EC key
writing EC key

18

https://github.com/BSNDA/PCNGateway-Go-SDK
https://github.com/BSNDA/PCNGateway-Java-SDK
https://github.com/BSNDA/PCNGateway-PY-SDK
https://www.openssl.org/source/

Blockchain-based Service Network User Manual

5.

Input the command - "dgst -sha256 -sign key.pem -out signature.bin data.txt" to
sign the data.txt file with the private key in the key.pem file to generate the
signature file: signature.bin.

OpenSSL> dgst -sha256 -sign key.pem -out signature.bin data.txt

Input the command - "dgst -verify pub.pem -sha256 -signature signature.bin
data.txt". Use the public key in the pub.pem file to sign and verify the data.txt and
signature.bin files.

OpenSSL> dgst -verify pub.pem -sha256 -signature signature.bin data.txt
Verified OK

If "Verified OK" is displayed, input the command - "base64 -in signature.bin -out
signature64.txt" to convert the signature file signature.bin to base64 encoded
signature64.txt.

OpenSSL> base64 -in signature.bin -out signature64.txt

Input the command - "pkcs8 -topk8 -inform PEM -in key.pem -outform PEM -
nocrypt -out keypkcs8.pem" to convert the private key in the key.pem file to pkcs8
format.

OpenSSL> pkcs8 -topk8 -inform PEM -in key.pem -outform PEM -nocrypt -out
keypkcs8.pem

Save the keypkcs8.pem file locally and copy all the contents of pub.pem, data.txt,
and signature64.txt to the public key, test data, and signature data text boxes
respectively on the Public Key Upload Mode page to verify the public key and
submit it to BSN.

5.3 DApp Services Publication and Participation

5.3.1 Overview

Permissioned DApp services refer to blockchain and DLT applications that are already
deployed and operational on BSN. Users can use a BSN portal or the publisher’s
business system to apply to and join the service. Published services are private and
cannot be browsed or searched by users through the BSN portal. DApp service
participation must be initialized by the publishers’ invitation links.

5.3.2 DApp Services Publication

5.3.2.1 Create a New DApp Service

To create a new DApp service, follow these steps

1.

In the BSN menu, click the Permissioned Service dropdown, in the list, click
Published Services to open the Published Services page.

19

Blockchain-based Service Network User Manual

Fuplisnea >ervices

Permissionless Services

EE Permissioned Services Service Name

TraceabilityService

Published Services 1.0.0 06/10/2020

Participated Services
1 items found. disnlav 1 to 1

2. On the published services page, click the Create a New Service button.
3. Inthe Basic Information section enter or select the following:

Service Name — Enter an applicable name for the service to be provided
Service Type — In the dropdown select from the various available service types
Version — The default version 1.0.0 is entered automatically. Unless necessary,

leave it as is.

e Platform Type — Select from either Fabric-1.4.3-secp256r1 and FISCO-2.4-
secp256k1

e Service Logo — Click on the icon to locate the image on your PC. Note that
the image must be in png/jpg/jpeg format and should be exactly 160 x 160
pixels.

Basic Information
Service Name Service Type Supply chain management
Version 1.0.0 Platform Type Fabric-1.4.3-secp256r1 (]

Service Logo

It is recommended to provide 160x160 pictures in png/ipg/jpeg format.The pictures must be the logo of the company or service without alteration.

e Service Introduction — Enter a brief description of the service

e Service Description — Enter a detailed description of the service including text
and pictures where applicable

4. Documents — Documents can be added so that other users can easily understand
your product. Click Add to display the Add Document dialog box. Click Select to
locate the document on your PC.

Documents & Resources ©

+Add

Name Type Action

Enter a Name, and choose a Type for the document. Click Confirm to add the

20

Blockchain-based Service Network User Manual

document.

5. Inthe Contact Information section, the login details of the user are automatically
populated, including the Contacts and Email. If necessary, you can add a
telephone number.

Contact Information

Contact Name | abce Mobile Numbe

i ‘123@hotmail.com

* publisher cannot publish company services in the name of an individual. If you publish campany services, please register an account in the name of the company. Contact information must be true and valid.

6. Click Next to continue.

5.3.2.2 Upload chaincode package

In the Upload chaincode package section, you can add your chaincode/smart contract
package or use the preset chaincodes available in the system.

+Add Chaincode Package | Use Preset Chaincode Package

Chaincade Name Version Chaincode Package Action

1. To Add chaincode package, click on the button to display the Add chaincode
Package where you enter or select the following:

Chaincode Name — Enter a name for the chaincode
Version — Enter the chaincode version

Chaincode Language — Select from one the languages (Java, Golang or
NodelS)

Initparam — enter the initialization parameters and if multiple, separate it with
commas

Chaincode Package — Click on the icon to select the package file from the
PC. Package files are to be in the .zip file format and the file name should only
contain letters and numbers or underscores

21

Blockchain-based Service Network User Manual

Add Chaincode Package @

Chaincode Name
Version 1.0.0
Chaincode Language JAVA
Init Param

Chaincode Package

Confirm Go Back

2. ToUse Preset Chaincode Package, click on the button to display the Select preset
chaincode package option. In the list of packages, select one of the listed packages
and click Confirm to add it.

Select preset chaincode package

Chaincode Name Version Download
bsnBaseCCEN 1.0.0 L
1 items found, display 1to 1 n

5.3.2.3 Define Service Functions and Roles

1. By selecting a Preset chaincode package, a set of automatic service functions are
added to the service and each of the functions can be Edited, Viewed, or Deleted.

22

Blockchain-based Service Network User Manual

Define Service Functions @
+Add Functions

2. If you wish to add more functions, click the Add Functions button to display the
dialog box. In it, enter or select the following:

e Function Name — Enter a name for the function

e Chaincode Name — Select from the list of chain codes

e Chaincode FUNC type — Choose from invoke, query or event

e Chaincode FUNC — Enter a description of the function

e Superior Functions — Select a function from the list of functions in the system

Add Service Functions

Function Name

Chaincode Name bsnBaseCCEM

Chaincode FUNC Type @ invoke query event

Chaincode FUNC

Superior Functions

Click Confirm to add it to the functions.

4. When the Use Preset Chaincode package is selected, a system administrator role
is automatically created with full access to the published service. To create another
role, Click Add Roles to display the Add Roles function and enter or select the
following:

e Name of Role — Enter a role name
e Description — Enter a description for the role

e Functional Authority —Choose one or more from the DApp’s existing
functions, for example: SaveData, UpdateData, RemoveData, QueryData,
and Query historical data from the preset chaincode package.

23

Blockchain-based Service Network User Manual

Add Roles
Name of Role @
Description @
“~
Functional Authority @
SaveData
UpdateData

RemoveData
QueryData

Query historical data

5. When done, click Confirm to add the role.
5.3.2.4 Select the Public City Nodes to deploy the service

Public city nodes are used by permissioned DApp publishers to deploy DApp’s peers
and smart contracts. Publishers can deploy all peers into one or more PCNs, so that all
peers connect together to form the DApp. We strongly suggest not to deploy all peers
onto one single PCN for data safety reasons. To add a public city node, follow these
steps

1. Inthe Select the City Nodes to deploy the service section, click Add City Nodes.

Select the city nodes to deploy the service @

Add City Nodes

Price for storage

City Nodes TPS Disk Storage(GB) Numbers of Peer Nodes Price for TPS (USD/month, ul
v e fmanthfpee (USD/month/peer)

Data Usage (USD/GB) Action

2. Inthe Add City Nodes window, enter or select:
e Name - Enter a name for the city code
e Disk Storage (GB) — 10 GB is allocated by default
e TPSisavailable — 10 is allocated by default

e Carrier—All carriers are listed, however, if you prefer a particular carrier, click
the dropdown and select that carrier

24

Blockchain-based Service Network User Manual

Click Search to list carriers.

4. Inthe list of carriers, select more than one carrier for redundancy purposes. When
done, click Confirm.

Name Carrier

TPS is available 10 TPS Disk Storage(GB) 106G
m fleset
Price for TPS Price for storage
Data Usage

Name Awvailable Peers (USD/month/peer (USD/month/peer Carrier Address

: ; (USD/GB)
Sydney 2 27.52 0.09 0.2 AWS Sydney, Commonwealth...
Singapore 2 17.59 0.07 0.8 Aliyun Singapore
Paris 2 2559 0.09 0.14 AWS Paris.French
California 2 2798 0.09 0.14 AWS California,UsA
Tokyd 2 20.73 0.04 0.2 Google Tokyd.Japan

& items found, display 1 to 8 n 2 N

The city nodes that have enough resources according to the TPS and storage
configuration are displayed alongside their costs. The resource costs are different for
each public city node.

5.3.2.5 Select Certificate Mode

There are two certificate modes, Key Trust Mode and Public Key Upload Mode. The
key trust mode certificates are generated and hosted by BSN while the public key
upload mode certificates are generated by developers, and the private key is stored
locally and the public key is uploaded to BSN. It is recommended that all developers
use the Public Key Upload Mode.

1. To use the certificate mode, in the Certificate Mode section, click either Key
Trust Mode or Public Key Upload Mode.

Certificate Mode @

Participant's Certificate Mode: @ Key Trust Mode Public Key Upload Mode

2. Click Next to continue.
5.3.2.6 Pay bills and submit for approval

In the bill detail section, the resource usage fees from the added city nodes are displayed
alongside a monthly total payment fee. If the bill is satisfactory, click the Confirm
button to proceed and make the payment. However, if you need to make changes to the
bill, click Back and make changes in the Add City Nodes section.

25

Blockchain-based Service Network User Manual

Price for TPS Price for Storage
(USD/month/peer) (USD/month/peer)

City Nodes TPS Disk Storage(GB) Numbers of Peer Nodes Data Usage (USD/GB)
Paris 1 0.14 25.59 0.09

singapore 10 10 1 0.18 17.59

Sydney 1 0.20 27.52 0.09

Payment Amount: 803.20 USD Per Year

Once the payment is successfully made, you will receive an email in your mailbox
informing you that your BSN service has been submitted successfully and will be
reviewed. You will be informed via email when the reviewed has finished.

Once the service has been approved, the service will be seen in the Published Services
section.

Service Name Platform Type Participants Status Payment Status Action

5.3.3 DApp Services Management

After the request for a service approval has been given, it will be listed in the
Permissioned Services - Published Services section. For each listed service some
Actions can be carried out. This includes Invite participants, Basic Information
Editing, Service Upgrade and Detail.

5.3.3.1 Invite participants

After the service has been approved and the service is in use, you can invite other users
of the blockchain network to participate in your service. To invite participants, follow
these steps:

1. Inthe BSN menu, click the Permissioned Services dropdown and click Published
Services to display the list of published services.

2. Inthe Action column, select the Invite Participants link to display the details to
send to participants who intend to join the service.

Click Copy to copy the link details. This can be emailed to the participants who login
with their BSN credentials to join or register with BSN first to use the service.

26

Blockchain-based Service Network User Manual

Invite Participants

Please copy the following URL and send it by SMS or Email to the users you want to invite

https://global.bsnbase.com/g/home/PermissionedServices/ParticipatedServices/ServicesDetail?
types=8202DA0SABSE19006CEC8C1934BIFOBF&appCode=5C12A75B67A30BI6B3402C968498CB57F709AE3AR7C5DT0DI550385F9D24
A4ABRapPId=DBIFB4771413A9E10A87C5EAL0ATFAD3&auditState=DED150CDBA0B364042C9DF1 C1E1306DD&appjoinAuditld=5C12A75

B67A30B96B3402C968498CB57F709AE3A87C5D70D9550385F3D24A4A8

5.3.3.2 Basic Information Editing

After the service has been running and participants have joined, the publisher can edit
basic information regarding the service including service name, type, platform type,
version, service logo, documents, and contact information. To edit the basic
information, follow these steps:

1. In the list of published services, locate the service to be edited. In the Action
column of the service, select Basic Information Editing to display the editing

page.

2. Add, edit or remove the basic detail of the service and click Save to store changes.
If no changes were made click Back to return to the Published Services page.

5.3.3.3 Service Upgrade

After a service has been published, the publisher can use the Service Upgrade option
to update the smart contracts and other functions. It will be reviewed again before it can
be used. To edit the Service Upgrade, follow these steps:

1. In the list of published services, locate the service to be edited. In the Action
column of the service, choose Service Upgrade.

2. Inthe Basic Information page, change the Version Number, which is mandatory
and/or any other details in the Basic Information page. Click Next to upload the
new smart contracts and set functions and roles as described before.

When done, click Confirm

5.3.3.4 Configuration Upgrade

In order to join the DApp services, the publisher should send out invitation links to the
potential participant. The potential participant can then click on the link to the services'
main page and apply for the service.

To upgrade the configuration, follow these steps:

1. Go to Published Services and select the enabled service on the list. Click
configuration upgrade to enter the configuration upgrade list page as below:

27

Blockchain-based Service Network User Manual

Published Services / Configuration Upgrade
Configuration Upgrade

DApp number Submit Time Amount{USD) Status Action

2. Click Add to create a configuration upgrade application form, and then click Add
city nodes to add new city nodes:

Published Services / Configuration Upgrade

Resource Configuration-Fabrictest

Add City Nodes.
City Nodes s Disk StoragelGBI Number of existed Numbers of Peer Price for TPS Price for storage Data Usage Action
peer node Nodes (USD/GB)
296
Californi: 9.
A4
Total:0.00USD
Terms of use and charges:
Service duration: 09/06/2020
Payment Amount: 0.00USD
Estimated amount of next 87.84USD(Monthly Payment)
deduction:
Note: *You need to pay the Configuration upgrade with 0.00 USD this time. Click OK and the system will automatically deduct the

fee from your account balance. After that, the fee will be deducted automatically on Monthly Payment basis.

*This payment does not include data usage fee. Data usage fee is charged by the actual usage per week and deducted

automatically. Please ensure that there is sufficient balance in your account so as not to affect the normal operation of the

service.

3. Click Submit to submit the configuration upgrade application. When submitting,
the system will prompt the publisher to pay the corresponding configuration
upgrade fee. After the publisher confirms, the system generates the configuration
upgrade bill and deducts money from the user's credit card. Whether the payment
is successfully charged, or not, the configuration upgrade application will go
through the review process. If the payment is successfully charged and the
application is approved, the system will conduct a configuration upgrade process
and complete the upgrade; if the charge fails, the bill will be kept for 72 hours and
then expires. If the publisher still wants to upgrade the configuration, he/she needs
to apply again.

Note: The fee paid when configuring the upgrade is the upgrade fee, which makes up
the difference in the remaining payment period between the pre-upgrade configuration
and the post-upgrade configuration of the billing cycle. After the upgrade is successful,
future charges will be made according to the new configuration from the next period.

5.3.3.5 Detail

The View option allows the publisher to view all the details of the published service
including Basic Info, Deployment, Roles, Approval records, Ledger Info,

28

Blockchain-based Service Network User Manual

Comments, and Historical Version. To view these options, follow these steps:

1.

In the list of published services, locate the service to be edited. In the Action
column of the service, click Detail to display the view page tabs.

In the Basic Info tab, you can see all the details of the service that has been
deployed including the Service name, Service type, Version, Platform type,
Service logo, Service Introduction, Service description, Documents, and
Contact Information.

In the Deployment tab, the information that can be viewed includes the Chaincode
package, Service function, and City Nodes.

In the Roles tab, the roles and their related functions are listed. To View a role,
click on the view link for that role name.

In the Approval records tab, you will see all the requested approval and their status
as well as time logs.

The Ledger Info tab shows more information about the published service than any
other tab. It shows the number of users accessed, number of transactions, peer
nodes, chaincodes, blocks, and logs of how the activities took place.

The Comments tab shows the comments made on the published service that can
be viewed by the publisher.

The Historical Version tab shows the history of the service including the Service
Name, Version, Service Type, Service Introduction, and Action.

5.3.4 DApp Services Participation

In order to join the DApp service, the publisher should send out invitation links to the
potential participant. The potential participant can then click on the link to the services'
main page and apply for the service.

5.3.4.1 Apply for a Service

To apply for a service, follow these steps:

1.
2.

Click the link that was shared. This will take you to the service information page.
In the service header, click Apply for the Service.

5.3.4.2 Select Roles and City Nodes

1.

In the list of roles, select a role you want to use. You can click the View link in
each of the roles to see more details about the role. You can select more than one

29

Blockchain-based Service Network User Manual

role.

Choose a Service Role

Name of Role Description Action

2. In the Public City nodes, click Add city nodes to display the Public City Nodes
the DApp is deployed on. You can select more than one node. The selected nodes’
gateways are where the off-BSN systems connect to. Please select the public city
node that is closest to you.

Add City Nodes

o e m e

-] Name Address Carrier
Sydney Sydney, Commonwealth of Australia AWS
Singapore Singapore Aliyun
Paris Paris,French AWS
3 items found, display 1 to 3 n

Click Confirm to view the nodes that were selected.

5.3.4.3 Apply Certificate Mode

Depending on the settings of the service publisher, there are two certificate modes for
service participation: Key Trust Mode and Public Key Upload Mode.

Key Trust Mode: Participants can select existing certificates on the city node or apply
for a new certificate.

30

Blockchain-based Service Network User Manual

Set Password for The New Certificate Read Instruction

Password

Confirm the new password

The certificate password cannot be recovered. Please keep it properly!

Public Key Upload Mode: Participants should upload the public key, test data and
signature data. The generation of public and private keys can be viewed by clicking
Read Instruction.

Upload A New Certificate Read Instruction

Public key

e
Enter test data

&
Signature data

<

5.3.4.4 Submit for approval
Click Confirm to join the service pending the publisher’s approval.

Participated Services

Participated Services(1)

Service Name Version Platform Type Publisher Participation Time Status Action

TraceabilityService 1.0.0 Fabric-1.4.3-secp256r1 retailer - To be reviewed

5.3.4.5 Approve a service

As the publisher of a service, in the service participation list, the publisher has can
approve, deny or disable a participant from using the service. To perform any of these
actions, follow these steps:

31

Blockchain-based Service Network User Manual

1.

2.

3.

In the Service Participation List section, locate the participant to review.

Participation Management

Service Name Version Application Time Status Action

For the participant to be reviewed, click the Review link in the Action column to
view the participant details. In the Approval Information section select either
Approved or Failed to Approve and write a comment in the Approval
Comments box to give details.

Click Submit for Approval or Back to return to the participant's list.

Approval Information

Approval Result: @ Approve Failed to Approve

Approval comments:

Submit for Approval

If the participant is approved, a message will prompt showing that the service
participation approval was successful.

After the approval has been given, the participant can view the service from their
Participated Services page as well as add more city nodes.

5.3.4.6 Download and renew a certificate

The BSN development team intends to build BSN into a most secure blockchain

infrastructure network. The certificate and key mechanisms of BSN are complex. There
are two kinds of key pairs used in generating certificates: DApp Access Key Pair and
User Transaction Key Pair. For each, there are two modes, the Key Trust Mode and the
Public Key Upload Mode. To work with certificates, follow these steps:

Key Trust Mode:

1.

In the My Certificates menu, click Key Trust Mode. The certificate page will be
displayed.

32

Blockchain-based Service Network User Manual

ey Trust Mode Public Key Upload Mode
Service Name TID AppCode Certificates City Nodes Password Action
Traceabilityservice 45202d9bb168477080d9ee5e02a41... app0003202006101817263357932 USER0003202006101723379147576... Paris ab***23 9

2. To download the certificate, click the 9 icon. You will be required to enter the
certificate password.

Fill in your certificate password

Password

3. To update the certificate, click the Certificate update link. You will be requested
to set a password for the certificate and confirm the password.

Set Password for The New Certificate

Password
Confirm Password

The certificate password cannot be recovered. Please keep it properly!

Confirm

4. Click Confirm to update the certificate.
Public Key Upload Mode:

1. Inthe My Certificates menu, click Public Key Upload Mode. The certificate page
will be displayed.

Key Trust Mode Public Key Uploac

Service Name TID AppCode Certificates City Nodes Action

FlyingUnicorn d77498a0967349a19454ch3a8d757893 app0003202007061026339883125 USER0003202006082324013815938_1 Sydney

2. To update the certificate, the public key, test data and signature data need to be re-
uploaded, and the update can only be completed after the test passes.

33

Blockchain-based Service Network User Manual

Tips

Public key

Enter test data

Signature data

View public/private key generation instructions Read Instruction

=)]

3. The user only needs to upload the public key in the Public Key Upload Mode. The
private key is kept locally by the user, so there is no need to download the certificate.

5.3.4.7 Configuration parameters for service access
To view and download the configuration parameters, follow these steps:

1. Inthe Permissioned Services menu, click Participated Services.
2. Inthe list of services, click the Detail option in the Action column for the service.

Participated Services(1)

Service Name Version Platform Type Publisher Participation Time Status Action

Settings

I bric.1.4 S601 § he pu S ppr Details

3. Click the dropdown beside the configuration parameters for service access to
view its configuration.

34

Blockchain-based Service Network User Manual

anfiguration parameters for service access & Download the configuration parameters

: USER0003202006082324013815938

appCode: app0003202007061026339883125

tid: d77498a0967349219454ch3a8d757893

Channel name: app0003202007061026339883125

Chaincode Name Chaincode deployment name Chaincode address Function Name FUNC

ical data getHistory

delete

TestEvent
UpdateData update

4. To download the parameters for service access, click Download the
configuration parameters to begin the download.

5.4 Off-BSN system Access Guide

5.4.1 Overview

Blockchain-based Service Network (hereinafter “Service Network™ or “BSN”) is a
cross-cloud, cross-portal, cross-framework global infrastructure network to deploy and
operate all types of blockchain and distributed ledger technology (DLT) applications

(DApp).

BSN aims to lower the cost of developing and deploying DApps by providing public
blockchain resources and environment to developers, just like the internet. It can further
reduce the costs associated with the development, deployment, operations,
maintenance, and regulation of DApps and, thereby, accelerate the development and
universal adaptation of blockchain and DLT technologies.

35

Blockchain-based Service Network User Manual

A complete DApp system based on BSN generally consists of two parts: the on-BSN
DApp smart contracts and the off-BSN systems. The off-BSN systems use the BSN
Public City Note (PCN) gateways to invoke the DApp smart contracts deployed on the
PCN to carry out on-chain operations such as executing transactions, writing data chain,
data queries, etc. The DApp service publishers and participants can deploy their off-
BSN systems on any cloud services they choose and then connect to the BSN PCN
gateways through the internet access DApp smart contracts and data.

Off-BSN System

PCN Gateway

4 N

Transaction Endorsement

Smart Contract/Chaincode

0i0 |

Ledger

_ Peer Node Y,

Public City Node(PCN)

The BSN DApp service publishers and participants should have their off-BSN systems
so that they can access the DApp smart contracts to execute transaction and query data
via the PCN gateway APIs. The following are the charts to show the connecting flow
and transaction sequences.

Off-BSN System Connection Flow:

36

Blockchain-based Service Network User Manual

Off-BSN System PCN Gateway Authority Chain

Initialize the Receive
transaction Transaction

Initialize
identity
verification

Verifying
identity

Receive
verification
result

Invoking Chaincode
chaincodes transactions

Endorse,
BN T B i Return———— ordering,
create block

37

Blockchain-based Service Network User Manual

Off-BSN System calling sequence:

w
Off-BSN PCN Authority DA
m System Gateway Chain PP
I
| |
|

|
|
|
|
Invoking PCN Gateway :
APlwith Access and TL! |
certificates Verifying identity,
and authority

- _Return verfication _
result

|
|
|
Sccessful |
|
|
|

Invoking Chqlincode Functions
and execufe transactions >

|
Retur! | chaincode

transaﬁtion result

Block writtfn into Ledge
|

.| .
Return chaincode transaction
fingl result

_ _Return Chaincode _
Transaction Result

— — ‘Return Results- — —

38

Blockchain-based Service Network User Manual

5.4.2 BSN Smart Contract Package Requirements

A smart contract, also known as chaincode in Hyperledger Fabric, is a computer protocol
intended to digitally facilitate, verify, or enforce the negotiation or performance of a contract.
Smart contracts allow the performance of credible transactions without a third party. These
transactions are trackable and irreversible. A smart contract is invoked to automatically execute
a transaction and operate ledger data. A DApp service on BSN can deploy multiple smart
contracts. Each smart contract can contain multiple functions.

5.4.2.1 Hyperledger Fabric smart contract package requirements

Hyperledger Fabric (“Fabric) chaincode can be compiled by multiple programming
languages, including Golang, java, and node.js. Each chaincode program must implement a
chaincode interface which usually consists of three basic functions: Init, Invoke, and Query.

® [nit: This function is called during the chaincode instantiation and its purpose is to prepare
the ledger for future requests. This function must be implemented in all chaincodes.

® Invoke: The Invoke function is called for all future requests from the off-BSN systems
towards the DApps. Here all DApp custom functions or what the DApps can do (for
example, to read data from the ledger, to write data in the ledger, to update data, to delete
data) are defined. Simply put, Invoke can be understood as an entry point to the chaincode
functions. The Invoke function also must be implemented in all chaincodes.

® Query: The Query function provides a method of querying ledger data. This function can
only be used for query purposes and does not offer any operations of ledger data. The Query
function is not required to be implemented in all chaincodes.

To realize the automatic deployment of DApp services and to improve deployment efficiency,
the following Fabric chaincode packaging requirements have been issued with different
programming languages.

1. Golang

The main function must be at the same or higher level as all chaincodes in the project. The
zipping path must be the same level folder where the main function is located, and the main
function path is the src-based path.

Example: BsnBaseCC Package (the preset chaincode package)
BsnBaseCC

I——main. go
I—ChainCode/
I——models/
—utils/

The package should be zipped under BsnBaseCC/ (package name is not required), and the main
function path (reference path) is BsnBaseCC.

Example: FabricBaseChaincode chaincode package on github (preset chaincode package)

39

Blockchain-based Service Network User Manual

github.com
L—BSNDA
L—FabricBaseChaincode
L—chaincode
L—go
L—hsnBaseCC
L—main.go
L—ChainCode/
L—models/
L—utils/
It should be zipped under
github.com/BSNDA/FabricBaseChaincode/chaincode/go/bsnBaseCC/ (package name is not
required), and the main function path (reference path) is
github.com/BSNDA/FabricBaseChaincode/ chaincode/go/bsnBaseCC.

Description: main.go: the entry; ChainCode: chaincode; models: entities; utils: utilities.

2. Java

gradle or maven-built projects, the projects must contain build.gradle or pom.xml files.
Example: BsnBaseCC package
BsnBaseCC

L—build.gradle

I_SI‘C

L—main
L —ijava
L—com.example.javacc
L—javacc.java

Package needs to be zipped under BsnBaseCC/. Zip package name is not required.

Description: src/main/java: project directory; com.example.javacc: package name; javacc.java:
chaincode information

40

Blockchain-based Service Network User Manual

3. Node.Js

package.json must be built into the project’s root directory. Package needs to be zipped
under BsnBaseCC/. Zip package name is not required.

Example: BsnBaseCC package

BsnBaseCC

L—marbles_chaincode.js

L—package.json

Description: marbles_chaincode.js: chaincodes

Note: when publishing DApp services in the BSN portal, chaincode packages should be created
in the project’s root directory using .zip format.

5.4.2.2 Hyperledger Fabric prebuilt smart contract package

A prebuilt chaincode package (Golang) is provided to BSN developers which contains basic
functions such as add, delete, edit, and query. New DApp developers can learn from this
package about Fabric chaincode programming and further extend the functions if needed. The
chaincode in this package supports data types such as string, integer, float point, and sets (map,
list), etc.

Please click this link to download:
https://github.com/BSNDA/FabricBaseChaincode

DApp publishers can also select the prebuilt chaincode package directly from the DApp
publishing page on the BSN portal.

The Prebuilt Chaincode package functions are as follows:

1. Add data (set)

Input parameter description:

baseKey: a unique primary key identifier of data

baseValue: stored data information

Example: {"baseKey": "str","baseValue": "this is string"}

Of which, the baseKey cannot be a blank string and the baseValue can be any type of data.
If the baseKey already exists, then directly return that it already exists and cannot be added;

if it does not exist, then add data.

2. Edit data (update)

Input parameter description:
baseKey: a unique primary key identifier of data

baseValue: stored data information

41

Blockchain-based Service Network User Manual

Example: {"baseKey": "str","baseValue": "this is string"}

Of which, the baseKey cannot be a blank string and the baseValue can be any type of data.
If the baseKey does not exist, then it cannot be updated; if it already exists, then update
the data.

3. Delete data (delete)
Input parameter description
baseKey: a unique primary key identifier of data
Example: "str"

Of which, the baseKey value cannot be blank and must exist, else it cannot be deleted.

4. Get data (get)

Input parameter description

baseKey: a unique primary key identifier of data

Example: "str"

Of which, the baseKey value cannot be blank and must exist, else it cannot be retrieved.

5. Get history ledger data (getHistory)

Input parameter description
baseKey: a unique primary key identifier of data
Example: "str"

Of which, the baseKey value cannot be blank. Response results: transaction Id (txld),
transaction time (txTime), whether to delete (isDelete) and transaction information (datalnfo).
5.4.2.3 FISCO BCOS smart contract package requirements

To realize automatic audit and deployment of FISCO BCOS (FISCO) DApp services and to
improve efficiency, the following FISCO smart contract packaging requirements have been
issued:

1. Package Structure of the Solidity smart contract

All smart contracts must be stored in a single-level folder including smart contracts, libraries,
and external contract interfaces. Import method of all contracts is import “./XXXX.sol”.

2. Smart Contract deployment instruction document (deploy.md)

deploy.md is used to explain clearly how the smart contract is initialized and deployed. It
consists of three main parts:

e Contract Description: to briefly describe the basic information of each contract.

e User Description: to describe the basic information of each transaction signing users
during initialization and deployment.

42

Blockchain-based Service Network User Manual

e Contract initialization description: to describe the steps of smart contract initialization
and deployment, so that BSN tech personnel can follow to complete the process.

3. Contract uploading specifications

When uploading a chaincode package (smart contract package), fill in the chaincode name
(contract name) that is consistent with the main contract class name and the main contract file
name.

Example: BsnBaseGlobalContract chaincode package (preset chaincode package)
BsnBaseGlobalContract

L—BsnBaseGlobalContract.sol
L—Table.sol

Package must be zipped under BsnBaseGlobalContract/. The zipped package name is not
required. If the main contract class name is BsnBaseGlobalContract, the main contract file
name should be BsnBaseGlobalContract.sol, and the chaincode name (contract name) must be
filled in as BsnBaseGlobalContract.

4. BSN Adaptation for FISCO Solidity Version Descriptions
Currently, FISCO BCOS in the BSN only supports Solidity 0.4.25 and older versions.
5.4.2.4 FISCO BCOS prebuilt smart contract package

The FISCO Prebuilt Smart Contract package is chosen from the Table.sol provided by the
FISCO BCOS development team, and can provide developers with basic functions such as
insert, remove, update, or query (using Solidity). New DApp developers can learn from this
package about FISCO smart contract programming and further extend the functions, if needed.
The stored data types supported by this smart contract include int256(int), address, and string,
of which string cannot exceed 16MB. To ensure on-chain performance, there is no analysis of
duplicate base_id and base_key. This should be handled by the off-BSN system. It is
recommended that each base_id has only one corresponding base_key and base_value.

Please click this link to download:
https://github.com/BSNDA/FISCOBaseContract

The prebuilt smart contract functions are as follows:
1. Insert data (insert)
Input parameter description
base id: the primary key identifier that requires inserting
base key: the key of the data to be inserted
base value: the value of the data to be inserted
Example: {"base 1d": "1","base key":1,"base value":"this is string"}
Of which, base_id and base value cannot be blank strings and the base key is in int256
data type.
2. Update data (update)
Input parameter description

base id: the primary key identifier that requires updating

43

Blockchain-based Service Network User Manual

base key: the key of the data to be updated
base value: the value of the data to be updated
Example: {"base 1d":"1","base key":"1","base value":"this is string"}
Of which, base_id and base value cannot be blank strings and the base key is in int256
data type. If the base id and base key do not exist, then they cannot be updated; if they
already exist, then the data will be updated.
3. Remove data (remove)
Input parameter description
base id: the primary key identifier that requires removing
base key: the key of the data to be removed
Example: {"base id":"1","base key":"1"}
Of which, the base id and base value cannot be blank and must exist, otherwise they
cannot be removed.
4. Select data (select)
Input parameter description
base id: the value of the primary key identifier that requires being selected
Example: {"base id":"1"}
Of which, the base_id cannot be blank and must exist, otherwise, it is not possible to select the
corresponding data.
5.4.3 PCN Gateway Fabric API

A PCN gateway is deployed on each public city node (PCN) to receive off-BSN system
requests signed and verified by DApp access keys. Then requests are routed to the
corresponding Fabric-based DApp chaincodes. Invoking the PCN gateway is realized by
sending HTTP requests to each PCN gateway service. The gateway is responsible for verifying
user and application identities and then uses these identities and chaincode functions to process
chaincode parameters and to send the chaincode transaction results back to the off-BSN
systems.

5.4.3.1 DApp Access Signature Algorithm

Whenever an off-BSN system sends requests to the PCN gateway, the HTTP request message
should be signed with the participant’s DApp access private key. When the PCN gateway
receives the message with the digital signature, it will verify the authentication and message
integrity with the corresponding hosted or uploaded DApp access public key. The gateway will
only process the request message further after the verification is passed.

1. Assemble signature string

Convert the request parameters into a joined string according to the order of the parameter
table, of which the request parameter prioritizes joining UserCode and AppCode of the Header
and the response parameter prioritizes joining code and msg. Then join the parameters in the
Body according to the order of the parameter tables in the definition of APIs.

2. Different type conversion formats

44

Blockchain-based Service Network User Manual

3.

4.

Type Rule Example Result
String No conversion abc Abc
Int/int64/long | Decimal conversion -12 -12
Float Decimal conversion; see notes for 193 193
values after decimal point
Bool Convert to “true” or “false” true True
Join according to parameter e o s
Array sequence and type {“abc”, “xyz”’} Abcxyz
Map[key]valu | Join key and value according to a1, “b:2} alb?
e parameter sequence
Convert the attributes in the object
Obiect one by one according to the {“name”: “abc”, abc12345
! document in the above-described “secret”: “123456”} 6
format

Signature rules

e Getting the Hash value - The converted string to be signed is required to be computed
with the SHA256 algorithm with UTF-8 encoding.

e Sign the Hash value - The hash value and private key should be encrypted with the
ECDSA (secp256rl) algorithm. If signed with SHA256WithECDSA, which includes
hash value computation, the first step is not necessary.

e Encoding the signature result to Base64.
Example

Parameters:

{"header":{"userCode":"user01","appCode":"app01"},"mac™:"","body":{*userld’:”abc”,”list
”: [“abC”,”XyZ”]}}

Result: user0lapp0Olabcabcxyz

5.4.3.2 Key and Certificate Modes

1.

Key Trust Mode

As described in chapter 5, DApp participants require two sets of key pairs to access the DApp:
DApp access key pair and user transaction key pair. With key trust mode, the pairs are
generated and hosted by BSN. The participants only need to download the private key (DApp
access key) from the BSN portal.

DApp Access Key Pair: After the participant has successfully joined the DApp, BSN will
generate one key pair (private and public keys) that corresponds to the DApp’s framework
algorithms under the Key Trust Mode. The participant can download the private key from
the “My Certificates” section of the BSN global portal and use it to sign the request message
sent to the PCN gateway. The gateway will use the hosted public key from the generated
key pair to validate the signature.

User Transaction Key Pair: This is the identity of a participant used to invoke the
chaincodes. Under the Key Trust Mode, after successfully joining a DApp, a participant’s
user transaction key pair will be created automatically by BSN by default. The participant’s
off-BSN system can use the participant’s UserCode to invoke the certificate generated by
the key pair. If the participant’s off-BSN system has multiple sub-users, the off-BSN
system can invoke the gateway’s “User Registration API” to register the sub-users and

45

Blockchain-based Service Network User Manual

generate separate user transaction key pair for each sub-user. The sub-users can use their
UserCode to connect to the DApp to execute transactions.

Transaction process:

2.

Off-BSN System PCN Gateway

1. Invoking "User Registration™ API4]
———————— 1.1 Return User information ———————

2. Invoking "Key Trust Mode Invoking
chaincode™ API | '
———————— 2.1 Return transaction result ———————

3. Invoking "Retrieving Transaction
information™ API

Public Key Upload Mode

As described in chapter 5, DApp participants require two sets of key pairs to fully access the
DApp: DApp access key pair and user transaction key pair. With public-key upload mode, the
key pairs are generated and stored locally by the participants. The participants only need to
upload the public keys to BSN via the BSN portal or gateway APIs.

DApp Access Key Pair: The DApp participant must generate the DApp access key pair
locally according to the DApp framework algorithm after successfully joining the DApp.
The participant stores the private key locally and uploads the public key to BSN via the
BSN global portal. The participant’s off-BSN system uses the private key to sign the
transaction messages when invoking the PCN gateway. The PCN gateway will use the
public key uploaded by the participant to verify the signature and validate the legality of
the transaction.

User Transaction Key Pair: This is the identity of a participant to invoke the chaincodes.
Under the Key Trust Mode, the participant must generate the user transaction key pair
locally and use the public key to generate the “public key registration application.”, then
from the participant’s off-BSN system to submit the registration application to BSN by
invoking the “Public Key Upload Mode user certification registration” API on the PCN
gateway to receive the public key certificate. If the off-BSN system has sub-users, it should
first invoke the “User Registration” API to register the sub-users before sending their public
key registration applications.

46

Blockchain-based Service Network User Manual

Transaction process:

Off-BSN

2. Invoking "User Certificate
registration” API '
————————— 2.1 Return certificate info ——————-—— 8
|
3. Assemble :
Transaction |
|
|
|

Parameters

4. Invoking "Public Key Upload Mode
Invoking Chaincode" API

———————— 4.1 Return transaction result ———————

5. Invoking "Retrieving Transaction
information” API

5.4.3.3 Retrieving DApp information API
Invoke this interface to get certain basic DApp information; this interface can be used with
Public Key Upload Mode transactions.
1. Interface address:
https://PCNgatewayAddress/api/app/getApplnfo

2. Call Method: POST
3. Signature Algorithm: Not Required
4. Call parameters

1 Header header Map Yes
2 Body body Map No
3 Signature value mac String Yes
Header

1 User unique 1D userCode String Yes
2 DApp unique 1D appCode String Yes
- | | |
Example

47

https://pcngatewayaddress/api/app/getAppInfo

Blockchain-based Service Network User Manual

{"header":{"userCode":"USER0001202004151958010871292","appCode":"app0001202
004161020152918451","tld":""},"mac"; "","body":{}}

5. Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature value mac String | Y
Header
. 0: successful
1 Response ID code int Y 1- failed
2 Response Message | msg String | Y
Body
1 DApp name appName String | Y
2 DApp type appType String | Y
DApp encryption 1. Key _Trust Mode
3 key type caType Int Y 2: Public Key Upload
Mode
4 DApp algorithm algorithmTy Int v 1: SM2
Type pe 2: ECDSA (secp256rl)
5 City MSPID mspld String | Y
Fabric corresponding
6 DApp chain name | channelld String | Y channelld, fisco
corresponding groupld

Example:
{
"header": {
"code™: 0,
"msg™: "Transaction Successful"

}

"mac":
"MEUCIQDE9zvOE/w4V/ILG6WUCFP08a7NDCALtX/10Z0cCyY4glQIgUTYWsFTALKES
8gE6452jKnnVBrhznGVOV2HPMCbNh8A=",

"body": {

"appName": "sdktest",

"appType": "fabric",

"caType": 2,

"algorithmType": 2,

"mspld": "OrgbNodeMSP",

"channelld": "app0001202004161020152918451"

5.4.3.4 User Registration API

Under the both Key Trust Mode and Public Key Upload Mode, when a participant joins, a
Fabric DApp needs to create user transaction key certificates for the sub-users of his/her off-
BSN system. The off-BSN system should invoke the User Registration API to register the sub-
users on the PCN first. A sub-user’s username is name@appCode in the call parameters

1. Interface address:
https://PCNGatewayAddress/api/fabric/v1/user/register

48

https://pcngatewayaddress/api/fabric/v1/user/register

Blockchain-based Service Network User Manual

2.
3.
4.

5.

Call Method: POST
Signature Algorithm: required and refer to Section 5.4.3.1
Call parameters

1 Header header Map Y

2 Body body Map N

3 signature value | mac String | Y

Header

1 user unique ID | userCode | String | Y

2 DApp unique ID | appCode | String | Y

Body

1 user name name String | Y Length<20
For Key Trust Mode DApps,
this can be blank; for public

2 user password secret String | N key upload mode DApp, if this
is blank then return with a
random password

Example:
{"header":{""userCode™:"USER0001202004151958010871292","appCode":"app000120200
4161020152918451","tld":""},"mac":"MEUCIQDCa3T1c8Fim3LFVfgvel IC/WKWtFnyOl
5FK7FXgddFwIgGHXApypixu9RpkHI13z80ZYdVeyRObX7icU3XWk2+VI=","body":{"n
ame":"user01" "secret":"123456"}}

Response parameters

1 Header header Map Y
2 Body body Map Y
3 f/laglrazture mac String Y
Header
. 0: successful
1 Response ID | code int Y 1- failed
2 E/Ie;pszgze msg String Y
Body
1 user name name String Y Length<20
For public key upload mode
user . DApps, if the call parameter
2 password secret String Y passpvr\)/ord is blank ?hen return
with a random password
Example
{
"header": {
"code": 0,
"msg™: "Transaction Successful"
h
"mac":
"MEUCIQCIfufMU8KRI1gMHIGgfWOh1iv2KIhS+HOdIUUdEUUrLQIgY Jz98xp5w/KdV
P6bJjHhV2pZPTe9Cn4xcOrPV4E7ZsA=",
"body": {
"name": "user01",
""secret": "123456"
}

49

Blockchain-based Service Network User Manual

B

5.4.3.5 Key Trust Mode invoking chaincode API

For key trust mode DApp, when the off-BSN system invokes the chaincode functions via PCN
gateway, it is required to include the call parameters in the request. The gateway will return the
execution result from the chaincode.

1. Interface address:
https://PCNGatewayAddress/api/fabric/v1/node/reqChainCode

This interface will directly respond the result without waiting for the generation of blocks.
Please use the interface “Retrieving transaction information” described in section 5.4.3.8 to
check the status of a block generated based on transaction ID.

Note: After a participant has successfully joined in a DApp service, the participant can view
and download the DApp’s configuration parameters which are used for off-BSN systems to
connect to this DApp’s chaincodes, including the PCN gateway address and Dapp access keys,
as shown below:

nam Blockchain-based (1) User Manual [@ Documentation (=] Message Center 2, Profile
Service Network

SN City Nodes Certificate Mode Access Address

Code: appLOU3202007061026339883125
My Cartificates fd: O77498a096734%a19454ch 3384757893

e: apph003202007061026339883125

User Center Chaincode Name Chait c Function Name. FUNC

2. Call Method: POST
3. Signature Algorithm: required and refer to Section 5.4.3.1
4. Call parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
Header

1 user unique ID | userCode String Y
2 ID[;A PP tinique appCode String Y
3 User gnd DApp tid String N

mapping ID
Body

50

Blockchain-based Service Network User Manual

5.

1 user name userName String N
. . Use 24 random byte array
random string nonce String Y of the base64 encoding
1 chainCode chainCode String Y
2 function name funcName String Y
3 Call parameters | args String[]] | N
Map<str
4 Transient data transientData | ing,strin | N
g>
Example:

{"header":{""userCode":"USER0001202004161009309407413","appCode":"app0001202004
161017141233920","tld"™:""},"mac":"MEQCICJpE1ljfeJKtw/ZboVuKSLy2RmmSdkhrEVPG
FIJhm9lalAiA/Qgs6RNzONdSS4/AFSwWBj7vC76Py1hXngO5zMD9pNtA==","body":{"userN
ame":"","nonce":"IgH70zfv6npgg9D3pShg9c6o+rAcpasD™, "chainCode™:"cc_app000120200
4161017141233920_00","funcName™:"set","args":["'{\"baseKey\":\"test2020048\" \"baseValu
e\":\"this is string \"}"],"transientData":{}}}

Response parameters

1 Header header Map Y
2 Body body Map Y
Signature .
3 Value mac String Y
Header
. 0: authentication successful
. Response ID | code int M -1: authentication failed
2 Response msg String N if code=0 then can be null
Message
Body
block If code is not 0, then leave
1 information blockInfo blockInfo N blank
chaincode If code is not 0O, then leave
2 response cCRes ccRes N
blank
result
blockInfo
1 ;I'Igansactlon txId String Y
. On synchronous mode
2 Block HASH | blockHash | String N returns Block HASH
Refer to the detailed
3 status value status Int Y transaction status
description in 6.3.13
ccRes
chaincode
200: Successful
1 response ccCode Int Y 500- Eailed
status
chaincode .
5 response ccData Str N Actual chaincode response
result
result
Example
{
"header": {
"code™: 0,
"msg": "Transaction Successful"

51

Blockchain-based Service Network User Manual

"MEUCIQCBtfO1AfYkoJ2hlIp8CfKK1iuhVEAYKPY8YFRAdVPIIAIgDjSqYgwlORJRYF6

}

2

"mac":

KZPU/uC5Fx/DxXxu9VgKwU9+Jhju=",
"body": {
"blockInfo™: {
"txId": "a144149150ee615a9d11c68485600f43dc2c3eb2a98d7b36de53a6b99e03¢c495",

"status": 0
}
"ccRes": {

"ccCode": 200,

"ccData": "SUCCESS"

}
}

5.4.3.6 Public Key Upload Mode user certification registration

For public-key upload mode DApp, after the participant registered its sub-users on the PCN by
using the “User Registration” interface (section 5.4.3.4), use this interface to upload public key
registration applications and receive the certificates (DApp access key pair certificates) for the

sub-users. Invoking this interface from Key Trust Mode DApp will return an error.

1. Interface address:
https://PCNGatewayAddress/api/fabric/v1/user/enroll

2. Call Method: POST
Signature algorithm: required and refer to Section 5.4.3.1
4. Call parameters

1 Header header Map Y
2 Body body Map N
Signature .
3 Value mac String Y
Header
1 user unigue 1D | userCode String Y
2 II:)[;A‘ PP unique appCode String Y
Body
1 user name name String Y user name used at
registration
2 user password | secret String Y Pas_s wor_d created at
registration
Use the ECDSA
- (secp256r1) algorithm
Certlflcaj[e . to generate the
3 Application csrPem string Y ifi licati
file content certificate application
file; the certificate CN
is name@appCode
Example:

52

https://pcngatewayaddress/api/fabric/v1/user/enroll

Blockchain-based Service Network User Manual

5.

{"header":{"userCode":"USER0001202004151958010871292","appCode":"app00012020
04161020152918451","tld":""'},"mac":"MEQCICQaY Mzs+edIQkfpt5hoaSO5dWqcrY7Q

75FYwyJo/B4rAiAQL0aEpdNATSZYHVcII4TxVCgY8XdQBBIyTAOqUmMSjkw==""bo
dy":{"name":"user01","secret":"123456","csrPem":"----- BEGIN CERTIFICATE
REQUEST-----

\nMIHOMIGQAQEAMC4XLDAgBgNVBAMMI3VzZXIwMUBhcHAWMDAXMjAYyMD
AOMTYXMDIWANMTUYOTE4ANDUXMFKkwEWYHK0ZI1zj0OCAQY1K0Z1zjODAQCcDQgA
EnguklxunmuUlbnKB\nam8QmeK6Geg/O6kL2D2ig85UMQTpG/sh9iYkduz8iCISRnF
9TVLiHUvIX2FGAOAQ\NK1Vz8aAAMA0GCCgGSM49BAMCAOcCAMEQCIE191in91
KIfEvfFIbxhF14enFHhtvOU\n5rK86huFiMMQAIBY X04fIBg6elL GjaavR7109fOvVZ5
W7X+GQjlIQDuUDgPQ==\n-----END CERTIFICATE REQUEST-----\n"}}

Response parameters

No. Field name Field Type Required | Remarks
1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
Header
0:
1 Response ID code int Y successful
-1: failed
2 Response Message msg String Y
Body
1 | Certificate content | cert [String |Y |
Example
"header": {
"code": 0,
"msg™: "Transaction Successful"
h
"mac":

"MEUCIQCEOgg5VHWSsZIuUNKAV2+xOJANGNCkw6f9J4+mFT1TWz/glgfu93jgzTzk0
DU2IfMKnExcwVbgelWMLVLMwKpICXNBA=",
"body": {

"cert": "-----BEGIN CERTIFICATE-----
\nMIICvTCCAmMSgAwIBAgIUcqn2HmMCYma/V2yKbnxuvc49KUOOWCgY IKoZ1zjOEA
wIWAnTJELMAKGA1UEBhMCQO04XEDAOBgNVBAgTBOJlaWppbmcxDDAKBgNVB
AOTAOQJTTJEP\NMAOGALUECXMGY 2xpZW50MQ4wDAYDVQQDEWVic25jY TAgF
wO0yMDAOMJEWNTAzMDBa\nGA8yMTAWMDMyMTEXMDQwMFowbDESMAOGA
LUECXMGY 2xpZW50MABGALUECXMIb3Jn\nYm5vZGUwDgYDVQQLEwdic25iY X
NIMA0GALIUECXMDY 29tMSwwKgYDVQQDDCN1c2Vy\nMDFAY XBWMDAWMTI
WMjAWNDE2MTAYMDE1MjkxODQ1MTBZMBMGBYqGSM49AgEGCCqG\nSM49
AWEHAOIABJ4ALpNcbp5rINW5ygWpvEJIniuhnoPzupC9g900POVDEEGRV7G/Y m\nJH
bs/IgvUkZxfU7y4h7ryV9hRgDgECtVc/Gjgf8wgfwwDgYDVROPAQH/BAQDAgeA\n
MAWGA1UdJEWEB/WQCMAAWHQYDVROOBBYEFG28toKRbzJTFa6v/xII'Yr6S9Eva
MB8G\nALUdIwQYMBaAFAcI4H+kis8vn94Z Y'Y pkrd+51dMKMIGbBggqAwWQFBgcl
AQSBjnsi\nYXR0cnMiOnsiaGYuQWZmaWxpY XRpb24i0iJvemdibm9kZS5ic251Y XN
ILmNvbSIs\nImhmLkVucm9sbG1lbnRIRCI6INVzZXIwMUBhcHAWMDAXMjAYyMDA
OMTYXMDIwMTUY\nOTE4ANDUxIliwiaGY uVHIwZSI6ImNsaWVudClIsIinJvbGUiOiJjb
GlIbnQifXOwCgY \nKoZIzj0EAwWIDRWAWRAIgLtITps/DOHK8S3La7bnlChB+88b1Fk
09bOAL360AFPIC\NIHQPCC30MoTHIId/X3fC5IxNukssmIMnEuDX73zRL55/\n-----
END CERTIFICATE-----\n"

¥
¥

53

Blockchain-based Service Network User Manual

5.4.3.7 Public Key Upload Mode invoking chaincode API

For Public Key Upload Mode DApp, the participant needs to assemble the transaction message
locally, and invoke this interface to initiate the transaction from the off-BSN system to the

DApp’s chaincode.

1.

Interface address:
https://PCNGatewayAddress/api/fabric/v1/node/trans

Call Method: POST
Signature algorithm: required and refer to Section 5.4.3.1
Call parameters

No. | Field name Field Type Required | Remark
1 Header header Map Y
2 Body body Map N
3 Signature Value | mac String Y
Header
1 user unique ID | userCode String Y
2 DApp unique ID | appCode String Y
Body
the transaction data
1 Transaction data | transData String Y should be encoded
with base64
Example:

{"header":{"userCode":"USER0001202004151958010871292","appCode":"app0001202
004161020152918451","tld":""},"mac":"MEUCIQCV8EZ20gbShI9XGGKX06Mquh+g
+NhhbUoAJBbnemXdaglgNMF7W7ecu5uej9BpVx04gwluVijbgcp3VYIcjDK0Z38=""
body":{"transData":"Cq0KCrsJCpcBCAMaCwi9gPrOBRD00+Z2IhxhcHAWMDAXM]jA
YMDAOMTYXMDIWMTUYOTE4ANDUXKKBjM2M2NTIzOTU4YzMAMTEXOTJIOGQ
ZNThkZDI2MTdmMWIXNGNiNjYxZGU2YjAyMmMXxY TgyM;jl20WU4Y ThjNDhkOi
YSJIBIiY2NfYXBWMDAWMTIWMjAWNDE2MTAYMDE1MjkxODQ1MV8wMBKeC
AgBCAOLT3InYk5vZGVNU1AS8QCctLSOtLUJFROIOIENFUIRJRKIDQVRFLSOtLSOK
TUNQ3ZUQONBbVNNQXdJQkFnSVVWanBGZTJFaERFaHJIOHBBVTh4bkd3dXhPb
U13Q2dZSUtvWKkl6ajBFQXdJdwpUakVMTUFrROExXVUVCaE1DUTAQeEVEQUICZ
05WQKFnVEIwSmxhV3BwYm1jeEREQUtCZ05WQkFVVEEWSIRUakVQCk1BMEdB
MVVFQ3hNR1kyeHBaVzUwTVEOdORBWURWUVFERXdWaWMyNWpZVEFnRNc
weULlEQTBNVGt3TKRNekl1EQMEKROE4eULUQXANRELSTVRFeEIEUXANRmMI3Y
KRFOE1BMEdABMVVFQ3hNR1kyeHBaVzUwTUE4ROEXVUVDeE1JYjNKbgpZbTV2
WkdVdORNWURWUVFMRXdkaWMyNWIZWES5sTUFVROEXVUVDeE1IEWTISAELT
d3dLZ1IEVIFRRERDTjBaWE4wWCk1ESKFZWEJ3TURBAO1USXdNakF3TKkRFMk1U
QXINREUXTWpreEQEUTFNVEJaTUINROJScUdATTTQ5QWAFRONDcUcKUOOOOUF
3RUhRBMEIBQk5YZmMFMVWI1wWMXIISFVMMXVKeEdwMDFQNHE5Zk81V2xFMF
ZtallYQmVMejBhY1lhgSU96NwpYb29KcGRUS1ZkUUJaZzYrZkVPWmhudm1vbUR
XWjRpdTRhYWpnZjh3Z2Z3dORNWURWUj]BQQVFILOJBUURBZ2VBCk1Bd0dBM
VVKRXdFQi93UUNNQUF3SFFZRFZSME9CQIIFRkZZRDg5emtkVIIRbzZpUEh3d2R
JejNaQ1llSck1COECKQTFVZEISUVINQMFBRKFSTRIK2tJczh2bjkOWIIZcGtyZCslb
GRNS01JR2JCZ2dxQXdRRkJInYO0IBUVNCam5zaQpZWFIwY25NaU9uc2IhR111UVda
bWFXeHBZWFJwYjl0aU9pSnZjbWRpYm05alp TNWIjMjVpWVhObEXtTnZiU0IzCKI
taG1Malz1Y205c2JHMWxiblJKUKNJINKIuUmMmxjM1F3TWtCaGNIQXdNREF4TWpBe
U1EQTBNVFI4TURJAO1UVXKKT1RFNESEVXhJaXdpYUdZdVZIbHdaUOk2SW10c
2FXVnVKkQOIzSW5KdmJIJHVWIPaUpqgY kdshGJuUWIMWDB3Q2dZSQpLblpJemowR

54

https://pcngatewayaddress/api/fabric/v1/node/trans

Blockchain-based Service Network User Manual

5.

UF3SURSAOF3UKFJIZ1ZZNi9jZINDTmpENKxwTXVaZEQzVWYVWko5¢3FSUVVT
R3hSQUI9SeGZONThDCKIFNOJHTDIJOHRCcHJiVmpY TldtQmpObWhgeUE3NOI3S
W8rbUg1ZXp4R1B1CiOtLSOtRUSEIENFUIRIJRKIDQVRFLSOtLSOKEhiQKmgB1lbwhb
gLAYoHXUNNjZSGOgBDheQMSbQprCmkIARIKEiJjY19hcHAWMDAXMjAYyMDAO
MTYXMDIWMTUyOTE4ANDUxXzAWGj8KA3NIdAo4eyJiY XNIS2V5l1joidGVzdDIw
MjAWNDAOIliwiYmFzZVZhbHVIljoidGhpcyBpcyBzdHJIpbmcgInOSRjBEAIB+mOUK
Y7fRjcZ1/qc96YPIGGod3UK56jJaWaE403J90QIgeirrjyzL6zQLN89tv3jDpl7vxKChk
GMO9UBIEFIFEGYo0="}}

Response parameters

1 Header header Map Y
2 Body body Map Y
Signature .
3 Value mac String Y
Header
0: authentication
. successful
1 Response ID code int Y "1 authentication
failed
Response . _
2 Message msg String N If code=0, can be null
Body
1 .bIOCk . blockInfo blockinfo | N It code is not 0, then
information leave blank
chaincode If code is not 0, then
2 ccRes ccRes N
response result leave blank
blockInfo
1 Transaction Id | txId String Y
. On synchronous mode,
2 Block HASH blockHash | String N returns Block HASH
refer to detailed
3 status value status Int Y transaction status
description in 6.3.13
ccRes
chaincode 200: successful
. response status ccCode Int Y 500: failed
9 chaincode ccData Str N actual chaincode
response result response result
Example
{
"header": {
"code": 0,

"msg": "Transaction Successful"

}

"mac":
"MEQCICXNKk400+Gkqgge2XgoaxdOolvDQe4RfLtwXkxjC7ce8TAIBLVU6PjOqWueV
B3t4h7REpNdcVf6L0gVzfdAlyovuc7g==",
"body": {
"blockInfo™: {

"txld™:
""c3c6523958¢3811192b8d358dd2617f1b14ch661de6b022c1a822269e8a8c48d",

"blockHash": ",

"status": 0

55

Blockchain-based Service Network User Manual

}

"ccRes": {
"ccCode": 200,
"ccData": "SUCCESS"

}
}
}

5.4.3.8 Retrieving transaction information API
The off-BSN system can use this interface to get the transaction information based on
transaction ID.
1. Interface address:
https://PCNGatewayAddress/api/fabric/v1/node/getTransaction

2. Call Method: POST
Signature algorithm: required and refer to Section 5.4.3.1
4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 user unique 1D userCode String Y

2 DApp unique 1D appCode String Y

Body

1 | transactionld | txId | String Y |
Example:
{"header":{""userCode":"USER0001202004151958010871292","appCode":"app0001202
004161020152918451","tld":""},"mac":"MEUCIQDIbcNI+C1iBbXWGW3qjhf80IRgC
gvduyxxOWXU2vn2TAIgZgA020L2aXBtrdLsYEKYPyiOJ9+AFrXOEwfuzy8B4bE=","
body":{"txId":"c3c6523958¢c3811192b8d358dd2617f1b14ch661de6b022c1a822269e8a8
c48d"}}

5. Response parameters

1 Header header Map Y
2 Body body Map Y
Signature .
3 Value mac String Y
Header
0: authentication
. successful
1 Response ID | code int Y _1- authentication
failed
5 Response msg String N if code=0 then can
message be null
Body
1 Block Hash | blockHash String Y
2 Block blockNumber | Long Y

56

https://pcngatewayaddress/api/fabric/v1/node/getTrans

Blockchain-based Service Network User Manual

Number
refer to detailed
3 Transaction status Int v transz:_lct[on §tatus
status description in
6.3.13
4 on-chain createName String Y
user name
5 Timestamp timeSpanSec Int64 v _second in the
Second timestamp
6 Timestamp timeSpanNsec | Int64 v nan.osecond in
Nanosecond the timestamp
Example
"header": {
"code": 0,
"msg": "Transaction Successful"
}
"mac":

"MEUCIQDUFw5pa4QJcEiQjYeLTI2L94HbsZbz7DArF+djgzWoTQIgU8u+dG6CcHwW
BZjuf9PvhYdEFAa/ujwo8UAPbAMKXRg0=",
"body": {
"blockHash":
"ab9366cf63881228863c884527fceefabc9ad2e375aa0bcbf71f17f75¢c7d3ff5",
"blockNumber": 7,
"status": 0,
"createName": "test02@app0001202004161020152918451",
"timeSpanSec": 1587445821,
"timeSpanNsec": 249139700

5.4.3.9 Retrieving block information API

After the data is stored on-chain, the off-BSN system can use this interface on the PCN gateway
to retrieve the block information of the current transaction (body.blockInfo), the status
(body.blockInfo.status), and transaction 1D (body.blockInfo.txld). If the status value is O, it
signifies that the transaction has been successful and a block has been created. The block
information can be queried according to the transaction ID.

1. Interface address:
https://PCNGatewayAddress/api/fabric/v1/node/getBlockInfo

Call Method: POST
Signature algorithm: required and refer to Section 5.4.3.1
4. Call parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
Header

1 | userunique ID | userCode | String | Y

57

Blockchain-based Service Network User Manual

5.

2 | DAppunique ID | appCode | String | Y

Body

1 Block number blockNumber | Int64 N Can’t be null at the
same time

2 Block HASH blockHash String N Can’t be null at the
same time

3 Transaction Id txId String N Can’t be null at the
same time

Example:

{"header": {"userCode": "USER0001202004151958010871292" ,"appCode"":

"app0001202004161020152918451","tld": ""},"mac":

"MEUCIQCrGthrAvNalUsWEdnDxZKNXFAnCpXOxIFQdplYYhGvuglgKvYqI9EX6RC
cOhqt6coufNPH/QhtKYNeThWJ2rEL+4g=","body": {"blockNumber": 6,"blockHash":

"txdd "

Response parameters

1 header header Map Y
2 body body Map Y
3 signature value mac String Y
Header
0: authentication
. successful
1 Response ID code int Y “1- authentication
failed
Response . if code=0 then can
2 Mespsage M3g String N be null
Body
1 Block Hash blockHash String Y
2 Block Number blockNumber Long Y
3 Er:;ﬂous Block preBlockHash String Y
4 Block Size blockSize Long Y byte
The number of
5 transactions on blockTxCount Int Y
current block
6 Transaction detail | transactions g‘;’t?nsactlon Y Transaction Detail
TransactionData
1 Transaction Id txld String
refer to detailed
Transaction transaction status
2 Status Int .,
Status description in
6.3.13
3 Tran_sactlon createName String
Provider
4 Transactlon timeSpanSec Int64
timestamp second
Transaction
5 timestamp timeSpanNsec Int64
nonasecond
Example

58

Blockchain-based Service Network User Manual

{
"header": {

"code": 0,
"msg": "Transaction Successful"
h
"mac":
"MEUCIQC8nfFnHW4sEYJImaSTT1xepxMGgomxyJit0ysyGgPBOAwIgfuuiegdGEbBi/2wmF
Cco39wmik3isLWtvnN9ZmJDTdk=",
"body": {
"blockHash™: "fc83c306677925efee540b4d7h7ca73e06f144cae34c706f1101d6b395ada2da™,
"blockNumber": 6,
"preBlockHash":
"93c86551d812229274e144093cd4bd17dach35bc6a01779930e11f43f886bf34",
"blockSize": 7020,
"blockTxCount": 1,
"transactions": [
{
"tx1d": "a8639f3a796267e048d475b00fe7646a4524f1c20d71880e19708821177b7bdb",
"status™: 0,
"createName": "test02@app0001202004161020152918451",
"timeSpanSec": 1587271285,
"timeSpanNsec": 26436800

5.4.3.10 Retrieving the newest ledger information API
Use this interface to retrieve the newest ledger information, including block HASH, previous
block HASH, and the height of the current block, etc.
1. Interface address:
https://PCNGatewayAddress/api/fabric/v1l/node/getLedgerinfo

Call method: POST
Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 user unique 1D userCode String Y

2 DApp unique ID appCode String Y

Example:
{"header":{"userCode":"USER0001202004151958010871292","appCode":"app00012020
04161020152918451","tld™:""'},"mac":"MEQCID7Z3J2PiRDOx7JasRamBZRTAHXj1X
AG1K/DUKzJEwWuIiAIBIY5p3H2kArE7OuY LOgEqMHI15Xgj5Vo0i5zVPGhyU/+w==""b
ody":{}}

5. Response parameters

59

Blockchain-based Service Network User Manual

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
Header
0: authentication
. successful
1 Response ID code int Y "1 authentication
failed
Response . if code=0 then can
2 Mespsage msg String N be null
Body
1 Block Hash blockHash String Y
2 Block Height height Long Y
3 E'fgﬂous Block preBlockHash | String Y
Example
{
"header": {
"code": 0,
"msg": "Transaction Successful"
¢
"mac":
"MEUCIQC4PhYTBNyt1rSeBeZTdOly42CxILVgK1b/RlieA33G1glgeodoEa50Ou0X4uW
¢/VGpOn6NKByhXIBbo22FME4xQ8aw=",
"body": {
"blockHash™:
"ab9366cf63881228863c884527fceefabc9ad2e375aa0bchf71f17f75¢c7d3ff5",
"height": 8,
"preBlockHash™:
"fc83c306677925efee540b4d7b7ca73e06f144cae34c706f1101d6b395ada2da”
}
}

5.4.3.11 Registering chaincode event API
Chaincode event in a DApp can trigger the off-BSN system to process further transactions.
This interface is used to register the chaincode event to be monitored.
1. Interface address:
https://PCNGatewayAddress/api/fabric/vl/chainCode/event/register

2. Call method: POST
Signature algorithm: required and refer to Section 5.4.3.1
Call parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
Header

1 | user unique ID | userCode | String | Y

60

Blockchain-based Service Network User Manual

5.

2 | DAppuniqueID |appCode |[String |Y
Body
1 ChainCode chainCode | String Y
2 E(:\;Incode event eventKey String Y

Chaincode event . . URL to receive
3 e notifyUrl String Y the monitored

notification URL .

chaincode event

4 Attached additional attachArgs | String N

parameters
Example:
{"header":{"appCode":"CL20191107112252" "userCode":"lessing"},"body":{"attachArgs
":"name=TOM&age=20","chainCode":"cc_bsn_test 00","eventKey":"test01","notifyUrl":
"http://192.168.6.128:8080/api/event/notifyUrl"},"mac":"MEUCIQCjzPr4dKZVild2Vm5Y
gcunOXThImQK2QfWcRnY Ck+jOzglgDW60Hca7/249M43p2EIwiMNbuejdwAnyW50
wiMgiwCQ="}

Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
: 0: successful
1 Response ID code int Y -1 failed
2 ll?/le:spsggze msg String Y
Body
1 | Event ID | eventld | String Y |
Example
{ "header": { "code": 0, "msg":"Event Registration Successful" }, "body":
{ "eventld": "bd3391deedbed44a7ad5b7f80ce59abfa" }, "mac™:
"MEQCIENLpj2RIMRL100vcMXs0X5rwfSjB/U7kMg+76GjEPNJAIBIUO/Eyj49uXTPrz
RWOmM4rJONQIkZnDMPbyalxojXwrA=="}

5.4.3.12 Registering block event API

Block event in a DApp can trigger the off-BSN system to process further transactions. This

interface is used to register the block event to be monitored.

6.

Interface address:
https://PCNGatewayAddress/api/fabric/v1/chainCode/event/blockRegister

Call method: POST
Signature algorithm: required and refer to Section 5.4.3.1
Call parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
Header

61

Blockchain-based Service Network User Manual

1 user unique 1D userCode String Y
2 DApp unique ID appCode String Y
Body

Chaincode event . _ URL to receive
! notification URL. | Netifyurl | String Y the monitored

block event
5 Attached additional attachArgs | String N
parameters
Example:

{"header":{"userCode":"USER0001202007101641243516163","appCode":"app00
01202101191411238426266","tld":""'},"mac":"MEUCIQCIsjKy/eelqaYrltzCO1lb
MfjsOgOkPu8+Y OCjbk3rPRAIgSfeyYvfeoh8QciZPG4fZQepaiyh7PmmWjY zFSq
yIT/c=""body":{"chainCode":"","eventKey":"","notifyUrl":"http://192.168.6.78:5
8011/v1/fabric/test”,"attachArgs":"a=1"}}

10. Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
. 0: successful
1 Response ID code int Y -1 failed
2 Response msg String Y
message

Body
1 | Event ID | eventld | String Y
Example
{

"header": {

"code™: 0,

"msg": "success"

2
"mac":
"MEUCIQC6PKsSqfkQGLrqgi2vMpZzBP5beL hyP+fXVr8S5aghaaglgaEtAnsuiub
ibYoYZzQ/8aGYErzm5rtU80j9520uHgCo=",
"body™: {
"eventld": "002f0e1f0b0f4331ab541461547a38d6"
}

¥

5.4.3.13 Chaincode and block event query API

62

Blockchain-based Service Network User Manual

Use this API to query the list of monitored chaincode and block events that have been

registered.

1.

Interface address:
https://PCNGatewayAddress/api/fabric/v1/chainCode/event/query

Call method: POST
Signature algorithm: required and refer to Section 5.4.3.1
Call parameters

| No. |[Fieldname [Field [Type | Required |Remarks |
1 Header header Map Y
2 Body body Map N
3 Signature Value mac String Y
header
1 user unique 1D userCode String Y
2 DApp unique 1D appCode String Y
Example:
{"header":{"appCode":"CL20191107112252" "userCode":"lessing"},"body":{},"mac":"M
EQCIANIxvuKVe0u/bGOVYCjM3g3ctxTYIWkejYp4620kNIcAIBcOTGVAKF7XErL2wl
PiwgfFjlu3Sszgyfzym/pEWRGXA=="}

Response parameters

1 Header header Map Y
2 Body body [Jbody Y Event List
3 Signature Value mac String Y
Header
0: Query
1 Response ID code int Y suF:cessfuI
-1: Query
failed
2 Response Message msg String Y
body
1 Event ID eventld String Y
. . Null if it’s a
2 Chaincode Event key | eventKey String N block event
3 | Cramcode Event notifyUrl | String %
4 Attached additional attachArgs | String N
parameters
5 Creation Time createTime | String Y
6 PCN ID orgCode String Y
7 user unigue 1D userCode String Y
8 DApp unigue code appCode String Y
9 Chaincode ID chainCode | String N Ik;llull ifit’s a
ock event
Returns
“block” if
. it’s a block
10 | Event type eventType | String N event: Null if
it’s
chaincode

63

Blockchain-based Service Network User Manual

| | | | | event

Example

{ "header": { "code": 0, "msg": "Query Event Successful" }, "body":

[{ ‘TeventKey" "test001", "notifyUrl™
"http://192.168.6.128:8080/api/event/notifyUrl", "attachArgs": "a=123\u0026b=456",
"eventld": "945ee631d26140118963ad3104c81713", “createTime": "2019-11-18
14:22:59", "orgCode": "ORG1571365934172", "userCode": "lessing",
"appCode": "CL20191107112252", "chainCode": "cc_bsn_test 00" },

{ TeventKey": "test002", "notifyUrl":
"http://192.168.6.128:8080/api/event/notifyUrl", "attachArgs": "hahahhahhahahahah",
"eventld": "346617a493d84c6d8512b8dddad87811", “createTime™: "2019-11-18
14:29:28", "orgCode": "ORG1571365934172", "userCode": "lessing",
"appCode": "CL20191107112252", *“chainCode": "cc_bsn_test 00" },

{ TeventKey" "test01", "notifyUrl":
"http://192.168.6.128:8080/api/event/notifyUrl", "attachArgs":
"name=Zhangsan\u0026age=20", "eventld": "bd3391deedbe44a7ad5b7f80ce59abfa",
"createTime": "2019-11-19 10:52:15", "orgCode": "ORG1571365934172",
"userCode": "lessing"”, "appCode": "CL20191107112252", "chainCode":
"cc_bsn_test 00" }], "mac":
"MEQCIEYXFMa8dfBrjy/s9H5JA0FIrjROJIBiIw+7/daELUbF5e AiA7a6HvqgbOpvévikun

HGxCB1o5DoeuJFDOFM6kLoU34Q=="

5.4.3.14 Remove chaincode and block event API
This interface is used to remove a chaincode event’s registration from the event list.

1.

5.

Interface address:
https://PCNGatewayAddress/api/fabric/vl/chainCode/event/remove

Call method: POST
Signature algorithm: required and refer to Section 5.4.3.1
Call parameters

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique 1D userCode String Y

2 DApp unique 1D appCode String Y

Body

1 | Event ID | eventld | String Y |

Example:

{"header":{"appCode":"CL20191107112252" "userCode":"lessing"},"body":{"eventld™:"
bd3391deedbed4a7ad5h7f80ce59abfa"},"mac”:"MEQCIE3/CLG5LXZZN7ENn7LZvzthajw
XHzpvDduXSsw4Th1IFAIAXGJ4WVtyCKbtCasQGofCkge8NOgZDNPgJIdTCtCi2SQ=

Response parameters

1 Header header Map Y
2 Body body Map Y

64

Blockchain-based Service Network User Manual

3 | Signature Value | mac | String Y |
header
0: remove
1 Response ID code int Y successful
-1: remove failed
2 Eﬂejsi(;gze msg String Y
Example
{ "header": { "code": 0, "msg": "Remove Event Successful" }, "body": null, "mac":
"MEUCIQCaTFLIiY7pPjkwcmSsLXOth7k9bQj9Sblg+1nMVjkFAAIgUsizFO+f1+dxU3/
hPxjf/+nadqG6aQFftIIWGtMhIVI="}

5.4.3.15 Chaincode and block event notification message API

This interface is implemented on the off-BSN system side. When the PCN gateway receives
the notification of a triggered event, it uses this interface to notify the off-BSN system about
the execution result.

After receiving the notification successfully, the off-BSN system returns a string containing
“success”, otherwise, the gateway will send the notification again at 3, 12, 27, and 48 seconds
respectively, for a total of five times.

Call method: POST
2. Signature algorithm: required and refer to Section 5.4.3.1

3. Call parameters

1 Header header Map Y
2 Body body Map N
3 Signature Value mac String | Y
header
1 user unique 1D userCode String | Y
2 DApp unique ID appCode String | Y
body
Null when the
1 Chaincode ID chainCode String | N block event
notification
2 PCN ID orgCode String | Y
3 Registered Event key | eventKey String | N
4 Registered Event ID | eventld String | Y
Additional
5 Registered Event attachArgs String | N parameters
parameters entered during
registration
The event name
in the chaincode,
6 Monitored event key | eventName String | N null when the
block event
notification
. Null when the
7 Current-Chalncode txld String | N block event
transaction Id o
notification

65

Blockchain-based Service Network User Manual

Monitored event

8 payload String | N
value
9 Current Block Height | blockNumber | Long | Y
Off-BSN system
uses this value to
judge if the
Response random . notification !S
10 : nonceStr String | Y already received.
string S
This string
remains the same
at the repeated
notifications.
Null when
11 Previous hash previousHash | String | N chaincode event
notification
Example:

Chaincode event nofitication

{"header":{"userCode":"lessing","appCode":"CL20191107112252"},"body":{"cha
inCode":"cc_bsn_test_00","orgCode™":"ORG1571365934172" "eventKey":"test:\\S
{32}","eventld":"2964a0f60b3e460f834618b3664af2da","attachArgs":"abc=12321
1","eventName":"test:12345678123456781234567812345678","txId":"32fc10568
1820fa556b8a460efcle43a47daa864b959eal 753abb4640f2dce49","payload™:"","b
lockNumber":74,"nonceStr":"522c8061b5e84837bad72ca08c6a353f"},"mac":"ME
QCIDUA4tROyjLtvD1b8TToWWAICPuUbmdPAEUXWRRgVN7kIAiA58je5u/7x
DuRPcgeUWL3nBIMouUGQ6dGKIMmMD7Jm08g=="

Block event notification

{"header":{"userCode":"USER0001202007101641243516163","appCode":"app00
01202101191411238426266"},"body":{"orgCode":"ORG2020041114171692360"
,"eventld™:"8746bb9ale854c9f8b3710f5a63f7¢c59", "attachArgs™:"a=1","previousH
ash":"022281f6089e3684501251775166b6bh0afd18al76ec98a835ch5d09aff0d4950
","blockNumber":12,"nonceStr":"79a7baa26c854caeb2e2e7abcOb7f07e"}, " mac":"
MEUCIQDiZrwf8fKG/3fuaVrsfTN3BKmLx+gnnEuuSaHfvIBbMQIgS+1gHKXe
VR24WXwOGuU3Nze/tLLziQOLkjXaueYuOctM="}

5.4.3.16 Transaction status description

Under both Key Trust Mode and Public Key Upload Mode, the description of the returned
transaction status when the off-BSN system invokes the DApp chaincodes via PCN gateway
APIs are shown as follows:

0 Successful

-1 Block creation time out
Submitted data empty

Unusual response

Error in the submitted information
Error in the creator’s signature
Invalid “endorser” transaction

g WIN|F

66

Blockchain-based Service Network User Manual

6 Invalid transaction settings

7 Unsupported transaction response
8 Error in the transaction ID

9 Duplicate transaction 1D

10 Failed endorsement

13 Unknown transaction type

14 Cannot locate target chaincode

17 Expired chaincode

18 Conflict in chaincode version

254 Invalid transaction

255 Invalid transaction for other reasons

5.4.4 PCN gateway FISCO API

A PCN gateway is deployed on each public city node (PCN) to receive off-BSN system
requests signed and verified by DApp access keys, then used to route the requests to the
corresponding FISCO BCOS-based DApp smart contracts. Invoking the PCN gateway is
realized by sending HTTP requests to each PCN gateway service. The gateway is responsible
for verifying user and application identities, and then uses these identities and smart contract
functions to process smart contract parameters then sends the smart contract transaction results
back to the off-BSN systems.

5.4.4.1 DApp Access Signature Algorithm

Whenever an off-BSN system sends requests to the PCN gateway, the HTTP request message
should be signed with the DApp participant’s DApp access private key. When the PCN
gateway receives the message with the digital signature, it will verify the authentication and
message integrity with the corresponding hosted or uploaded DApp access public key. The
gateway will only process the request message further after the verification is passed.

1. Assemble signature string

Convert the request parameters into a joined string according to the order of the parameter
table, of which, the call parameter prioritises joining UserCode and AppCode of the Header
and the response parameter prioritises joining code and msg. Then join the parameters in the
Body according to the order of the parameter tables in the definition of APIs.

2. Different type conversion formats

Type Rule Example Result
String No conversion abc abc
Lrét/mt64llo Decimal conversion -12 -12

Decimal conversion; see notes
for values after decimal point
Bool Convert to “true” or “false” true true
Join according to parameter
sequence and type

Map[key]va | Join key and value according to
lue parameter sequence

Convert the attributes in the
object one by one accordingto | {*name”:”abc”,”’sec
the document in the above- ret”:”123456}
described format

Float 1.23 1.23

Array {“abc”,”xyz”’} abcxyz

{“a™1,"b":2} alb2

Object abc123456

67

Blockchain-based Service Network User Manual

3. Signature rules
1. FISCO BCOS framework DApp using ECDSA (secp256k1) secret key algorithm

e Getting the Hash value: The converted string to be signed is required to be computed
with SHA256 algorithm with UTF-8 encoding.

e Sign the Hash value: The hash value and private key should be encrypted with ECDSA
(secp256k1) algorithm. In the processing of some programming languages (C#, Java),
if signed with SHA256WithECDSA, which includes hash value computation,
therefore, the first step is not necessary.

e Encoding the signature result to Base64.
2. FISCO BCOS framework DApp using SM secret key algorithm

e Getting the Hash value: The converted string to be signed is required to be computed
with SM3 algorithm with UTF-8 encoding.

e Sign the Hash value: The hash value and private key should be encrypted with SM2
algorithm.

e Encoding the signature result to Base64.
4. Example

Parameters:

{"header": {"userCode":"user01","appCode":"app01"},"mac":"","body": {“userld”:’abc”, list
”: [‘Gabc”’Q’Xyz”] } }

Result: user0lapp0Olabcabcxyz

5.4.4.2 Key and Certificate Modes
1. Key Trust Mode

As described in the chapter 5, DApp participants require two sets of key pairs to access the
DApp: DApp access key pair and user transaction key pair. Under the key trust mode, the pairs
are generated and hosted by BSN. The participants only need to download the private key
(DApp access key) from the BSN portal.

DApp Access Key Pair: After the participant has successfully joined the DApp, BSN will
generate one key pair (private and public keys) that corresponds to the DApp’s framework
algorithms under the Key Trust Mode. The participant can download the private key from “My
Certificates” section of the BSN global portal and use it to sign the request message sent to the
PCN gateway. The gateway will use the hosted public key from the generated key pair to
validate the signature.

User Transaction Key Pair: This is the identity of a participant to invoke the chaincodes. Under
the Key Trust Mode, after successfully joining the DApp, a participant’s user transaction key
pair will be created automatically by BSN by default. The participant’s off-BSN system can
use the participant’s UserCode to invoke the certificate generated by the key pair. If the
participant’s off-BSN system has multiple sub-users, the off-BSN system can invoke the
gateway’s “User Registration API” to register the sub-users and generate a separated user
transaction key pair for each sub-user. The sub-users can use their own UserCode to connect
to the DApp to execute smart contract transactions.

68

Blockchain-based Service Network User Manual

Transaction process:

2.

Off-BSN System PCN Gateway

1. Invoking "User Registration” API4>‘II
———————— 1.1 Return User information———-————

2. Invoking "Key Trust Mode Invoking
chaincode" API I
———————— 2.1 Return transaction result ———————

3. Invoking "Retrieving Transaction
information™ API

Public Key Upload Mode

As described in chapter 5, DApp participants require two sets of key pairs to fully access the
DApp: DApp access key pair and user transaction key pair. With public-key upload mode, the
key pairs are generated and stored locally by the participants. The participants only need to
upload the public keys to BSN via the BSN portal or gateway APIs.

DApp Access Key Pair: The DApp participant must generate the DApp access key pair
locally according to the DApp framework algorithm after successfully joining the DApp.
The participant stores the private key locally and uploads the public key to BSN via the
BSN global portal. The participant’s off-BSN system uses the private key to sign the
transaction messages when invoking the PCN gateway. The PCN gateway will use the
public key uploaded by the participant to verify the signature and validate the legality of
the transaction.

User Transaction Key Pair: This is the identity of a participant to invoke the chaincodes.
Under the Key Trust Mode, the participant must generate the user transaction key pair
locally and use the public key to generate the “public key registration application”, then
from the participant’s off-BSN system to submit the registration application to BSN by
invoking the “Public Key Upload Mode user certification registration” APl on the PCN
gateway to receive the public key certificate. If the off-BSN system has sub-users, it should
firstinvoke the “User Registration” API to register the sub-users before sending their public
key registration applications.

Transaction process:

69

Blockchain-based Service Network User Manual

Off-BSN

2. Invoking "User Certificate
registration” API I '
————————— 2.1 Return certificate info - - - - - - — -
3. Assemble

Transaction
Parameters

4. Invoking "Public Key Upload Mode
Invoking Chaincode” API

———————— 4.1 Return transaction result - ——-—--—

5. Invoking "Retrieving Transaction
information” API

———————— 5.1 Return transaction info- === ——~~~

5.4.4.3 Retrieving DApp information API

Invoke this interface to get certain basic DApp information; this interface can be used with
Public Key Upload Mode transactions.

1. Interface address:

https://PCNgatewayAddress/api/app/eetApplnfo

2. Call Method: POST
Signature Algorithm: Not Required
Call parameters

1 Header header Map Yes
2 Body body Map No
3 Signature value mac String Yes
Header
1 User unique ID userCode String Yes
2 DApp unique ID appCode String Yes
Body

| | | | |
Example:
{""header":{""userCode":"USER0001202004151958010871292","appCode":"app0001202
004161020152918451","tld":""},"mac": " ,"body":{}}

70

https://pcngatewayaddress/api/app/getAppInfo

Blockchain-based Service Network User Manual

5. Response parameters

1 Header header Map Y

2 Body body Map Y

3 Signature value mac String | Y

Header

: 0: successful

1 Response 1D code int Y 1 failed

2 Response Message | msg String | Y

Body

1 DApp name appName String | Y

2 DApp type appType String | Y

DApp encryption 1. Key _Trust Mode

3 key type caType Int Y 2: Public Key

Upload Mode
DApp algorithm algorithmTy 1: SM2
4 Tvpe o Int Y 2:
yp P ECDSA(secp256r1)

5 City MSPID mspld String | Y
Fabric
corresponding

6 DApp chain name | channelld String | Y channelld, fisco
corresponding
groupld

Example:

{

"header": {
"code": 0,
"msg": "Transaction Successful"

}

"mac":
"MEUCIQDE9zvOE/w4V/ILG6WUCFP08a7NDCALtX/10Z0cCyY4gIQIgUTYWSFTAL
KE88gE6452jKnnVBrhznGVOV2HPMCbNh8A=",

"body": {

"appName": "sdktest",

"appType": "fabric",

"caType": 2,

"algorithmType": 2,

"mspld": "OrgbNodeMSP",

"channelld": "app0001202004161020152918451"

¥
¥

5.4.4.4 User Registration API

After a participant has successfully joined in a FISCO BCOS (FISCO) DApp, his/her off-BSN
system can invoke this interface to generate the user account and user address to execute smart
contract transactions.
1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/user/register

2. Call Method: POST
3. Signature algorithm: required and refer to Section 5.4.4.1

71

Blockchain-based Service Network User Manual

4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique 1D userCode String Y

2 DApp unique ID | appCode String Y

body

1 user name userld String Y Registered
user name

Example:

{

"header":{"appCode™:"CL1881038873220190902114314" "userCode":"newuser"},

"body":

{

“userld”:”abc”

}

"mac":;"MEQCIBRhaM2szckWI9N9gcgnaY XOXGQw7SflI9DIRvxcI3YVAIBt4 XeNs+

EUjhBNSr31jLRPZucsuGHxfjt9RiaNIQS8cA=="}

signature value:

5. Response parameters

1 Header header Map Y
2 Body body Map Y
3 \S/lslr:jaeture mac String Y
header
0: authentication
. successful
1 Response ID | code int Y "1 authentication
failed
Response . if code=0 then can
2 Mespsage Msg String N be null
body
User . If code is not 0,
1 information data [Istring N then leave blank
data
1 User ID userld String Y
2 User Address | userAddress | String Y
Example
{
"header": {
"code": 0,
"msg": "Transaction Successful"

}

"mac":
"MEQCIEI5SVKMyJUXIs2Hf8TLoPXjZLT4/L2wyXoddgTnZdqRsAiBXEBMeCOZ8M97
OCRUAMZNMCcL974vhzjOS/tk8/wbghsA==",

"body": {

"userld": "100003",
"userAddress": "0x14647a48303b5e1c77934583883ebc327ba3b297"
¥

72

Blockchain-based Service Network User Manual

B!

5.4.45 Key Trust Mode Invoking Smart Contract API

For the key trust mode FISCO DApps, when the off-BSN system invokes the smart contract
functions via PCN gateway, it is required to include the call parameters in the request. The

gateway will return the transaction result from the smart contract.

1. Interface address:
https://PCNGatewayAddress/api/fiscobcos/v1/node/reqChainCode

Note: After a participant has successfully joined in a FISCO DApp service, the participant can
view and download the DApp’s configuration parameters which are used for off-BSN systems
to connect to this DApp’s smart contracts, including the PCN gateway address and Dapp access
keys, as shown below:

nam Blockchain-based
Service Network

Certificate Mode

e: applOD3202007061026339883125

Chaincode Name

2. Call Method: POST

Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

(@ User Manusl [Documentation

(] Message Center

FUNC

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
1 user unigue ID | userCode String Y
2 DApp unique ID | appCode String Y
Body
. Registered user ID
1 User ID userld String Y via 7.3.1 API
2 Smart Contract contractName | String Y
Name
3 Function Name | funcName String Y
. convert array type
Function . . .
4 Parameters funcParam string N to json string
format

73

Profile

o

Blockchain-based Service Network User Manual

5.

Example:

bs="}

{"header":{"appCode":"cl0006202003181926573677572","userCode":"USER00062020
03181951281835816"},"body":{""contractName":"HelloWorld","userld™:"100003","func
Name":"set","funcParam™:[\"abc\"]},"mac":"MEUCIQDTFe2Gerdf7YJrG1alYt99M0Z
Q3T1IGpsXdNmFV7WuTglgSkZ19abUhAJbMrJMBoD8N7f26xhpQRUR4vVNAFY7EE

Response parameters

1 Header header Map |VY
2 Body body Map |Y
3 Signature Value | mac String | Y
header
0: authentication
. successful
1 Response ID code int Y "1 authentication
failed
9 Response msg String | N if code=0 then can be
Message null
Body
1 Invoke Type constant Bool | N
uer . If Constant is true, this
2 i?lfor%ation querylnfo String | N field has value.
Transaction _ If _Co_nstant is false,
3 txld string | N this field has value and
hash . .
is valid.
If Constant is false,
4 Block HASH blockHash String | N this field has value and
is valid.
If Constant is false,
5 Block Number | blockNumber | Int N this field has value and
is valid.
If Constant is false,
6 Gas Used gasUsed Int N this field has value and
is valid.
If Constant is false,
this field has value and
Transaction _ is valid._OxO means
7 status String | N transaction successful,
Status
status value refer to
transaction receipt
status in 7.3.9
If Constant is false,
8 From account from String | N this field has value and
is valid.
If Constant is false,
9 To account To String | N this field has value and
is valid.
If Constant is false,
10 Input Input String | N this field has value and
is valid.
If Constant is false,
11 Ouput output String | N this field has value and

is valid.

74

Blockchain-based Service Network User Manual

| Example

5.4.4.6 Public Key Upload Mode Invoking Smart Contract API

When the off-BSN system invokes the node gateway, it should follow the API descriptions to
add the corresponding parameters. After invoking the node gateway, the node gateway returns
the execution result of the smart contract. In the transaction of Public Key Upload mode, the
private key of the transaction on the chain is generated and saved by the user. Then the client
performs the assembly and signature of the data locally. The signed data is uploaded to the
node gateway, which forwards the data to the corresponding blockchain node to initiate the
transaction request. Data assembly in this pattern requires information such as the contract
ABI, which is compiled when developing the contract, and the contract address, which is
available on the application details page. In the SDK of the gateway, the assembly method of
the data on the link has been implemented, which can be directly called.

1. Interface address:
https://PCNGatewayAddress/api/fiscobcos/v1/node/trans

nam Blockchain-based (1) User Manual [@ Documentation (=] Message Center 2, Profile
Service Network

Home

SN City Nodes Certificate Mode Access Address
Permissionless Services ! !

58 Permissioned Services h S

Published Services

e: apph003202007061026339883125

User Center Chaincode Name Chaincode deployment name Chaincode address Function Name. FUNC

Note: After a participant has successfully joined in a FISCO DApp service, the participant can
view and download the DApp’s configuration parameters which are used for off-BSN systems
to connect to this DApp’s smart contracts, including the PCN gateway address and Dapp access
keys, as shown below:
2. Call Method: POST

Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header

1 user unique ID | userCode String Y
2 DApp unique ID | appCode String Y
Body

1 | Smart Contract | contractName | String | Y

75

Blockchain-based Service Network User Manual

5.

Name
2 Transaction transData String Y
Data
3 Contract address | contractAddress | String N
4 Contract ABI contractAbi String N

Example:

Contract ABI"}}

{"header":{"userCode":"USER0001202006042321579692440","appCode":"app0001202
006042323057101002","tld":""'},"mac":"MEUCIQCrjleRVStluwFFGkr37b\VM8pF0Jg

AWb40mKEBCc5HbpjglgEzXRIgG+Q70bwuD2MY4EH09sIsIIW71M+aQKOfAN3wU
=","body":{"contractName":"BsnBaseContractk1","transData":"0xf9016fa008d8ebch4b

1f8205fd7883aa3ce9b9c844424070e55a3af6a5dasd7ee97d287385051f4d5¢0083419cel
7794866aefc204b8f8fdc3e45b908fd43d76667d7f7680b8e4ebf3b24f0000000000000000

006000000000000000000000000
005000000000000000000000000000000
00000000000000000000000000000000200000000000000000000000000000000000000

00000000000000000000000000573303630340000000000000000000000000000000000
000
0000000000002616100
000000018187801ba0324efc9e17f1d31d95535¢5103083560560f836931945d03fb69ach
6fd2046b5a05fa6t574f83b3b753c9fe40649a08c2a497af1cd804e08fed2b153af20267f23"

:'contractAddress":"0xe2dOd414d436d8be9d52e2f40e6dd24a63faa638","contractAbi":"

Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: authentication
. successful
1 Response ID code int Y _1: authentication
failed
9 Response msg String N if code=0 then can be
Message null
Body
1 Invoke Type constant Bool N
uer . If Constant is true,
2 %for%ation querylnfo String N this field has value.
Transaction _ If _Co_nstant is false,
3 txld string N this field has value
hash . .
and is valid.
If Constant is false,
4 Block HASH blockHash String N this field has value
and is valid.
If Constant is false,
5 Block Number | blockNumber | Int N this field has value
and is valid.
If Constant is false,
6 Gas Used gasUsed Int N this field has value
and is valid.
Transaction . If Constant is false,
! Status status String N this field has value

76

Blockchain-based Service Network User Manual

and is valid. 0x0
means transaction
successful, status
value refers to
transaction receipt
status in 7.3.9

If Constant is false,
8 From account from String N this field has value
and is valid.

If Constant is false,
9 To account To String N this field has value
and is valid.

If Constant is false,
10 Input Input String N this field has value
and is valid.

If Constant is false,
11 Output output String N this field has value
and is valid.

Example

5.4.4.7 Retrieving Transaction Receipt API

After the smart contract executes one transaction, this interface can be used to retrieve the

transaction receipt information according to the transaction HASH value.

1. Interface address:
https://PCNGatewayAddress/api/fiscobcos/v1/node/getTxReceiptByTxHash

2. Call Method: POST
Signature algorithm: required and refer to Section 5.4.4.1
4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unigue 1D userCode String Y

2 DApp unique ID appCode String Y

body

2 | Transaction Hash | txHash | string Y |
Example:
{"header":{"appCode":"cl0006202003181926573677572","userCode":"USER0006202003181951
281835816"},"body":{"txHash":"0x755f3e7833778f674e1b025f513f05722ba7248be43a3¢9168b8
80847814021a"},"mac™":"MEY CIQCe6s19zqspsy1bS6Ka9Q80+pE7TEDWdsWj4UBSg6FM7Alh
AJrud/EoxnURQcDc47iwTdh70dxJEJPE+rakK9UaHjNaJ"}

signature value:

5. Response parameters

1 Header header Map Y

77

Blockchain-based Service Network User Manual

2 Body body Map
3 Signature Value | mac String
header
0: authentication
. successful
1 Response ID code int _1- authentication
failed
Response . if code=0 then can
2 Mesiage msg String be null
Body
1 Trans_action txld string If code is not 0,
Receipt Info then leave blank
Block HASH blockHash
Block Number blockNumber
Gas Used gasUsed
From account from
To account to
Smart Contract contractAddress
Address
Example
{
"header™: {
"code™: 0,
"msg": "Transaction successful”
2
"mac":
"MEUCIQCUIhnvH9a4HN/Y ITf4A0OWgTuHmmz6qMEO8914effHdclwlgStdeb/dVplhn3/FoCjeSc
VRyiEUhpkbze9bVmlgaXqgs=",
"body": {
"blockHash":
"0x199eca276b60473dd65f8036641684456694b419d89ef41b4953a9cdac848305",
"gasUsed": 2154887,
"blockNumber": 1,
"tx1d": "0x8ee0c68e222742b5b70878265d3fdbd3a8e0d549da42a298a4ae872ca4fbfd89",
"contractAddress": "0x20453db36c492fa49da9fab1b80db7fa5f46b01e",
"from": "0x08ac3132a6¢7e6caba7fhaf0521bb8b6f370ed35",
"to™: "0x00™
}
}

5.4.4.8 Retrieving Transaction information API

After the smart contract executes one transaction, this interface can be used to retrieve the

transaction detailed information according to the transaction HASH value.

1. Interface address:
https://PCNGatewayAddress/api/fiscobcos/v1/node/getTxinfoByTxHash

2. Call Method: POST
Signature algorithm: required and refer to Section 5.4.4.1
4. Call parameters

78

Blockchain-based Service Network User Manual

5.

| No. |[Fieldname [Field [Type | Required | Remarks |
1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
header
1 user unique 1D userCode String Y
2 DApp unique 1D appCode String Y
Body
1 | Transaction HASH | txHash | string Y
Example:
{"header":{"appCode":"cl0006202003181926573677572","userCode":"USER0006202003181951
281835816"},"body":{"txHash™:"0x755f3e7833778f674e1b025f513f05722ba7248be43a3c9168b8
80847814021a"},"mac":"MEUCIQDDQudQBVHKI5tIpe TDGKQA+LPRMTA2k9u7hCZAYVobv
QlgNseUfaVw8d/LxooPPWyQS0204EUt6wmEISgtnTcUO7k="}

Response parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value | mac String Y

header
0: authentication

. successful

1 Response ID code int Y “1- authentication
failed

5 Response msg String N if code=0 then can be

Message null
Body

Transaction .
HASH txld String

Block HASH blockHash String
Block Number blockNumber | Int

Gas Used gasUserd Int
From account from String
To account to String
value Int
input String
Example
{
"header": {
"code™: 0,
"msg": "Transaction Successful"
h

"mac":
"MEQCIBMgntmgQqgZXkBbrLhmXEcuOqTG4YWvIfGImebzEDbzcAIAKKHutOMBShgpSAE08
ts2MEQCIBMgntmgQgZXkBbrLhmXEcuOqTG4YWvIfGImebzEDbzcAiIAKKHuUtOMBShgpSAE
08ts2+OBIRmEEbedjihix5FZZvrw==",

"body": {

"blockHash"":
"0x199eca276b60473dd65f8036641684456694b419d89ef41b4953a9cdac848305",

79

Blockchain-based Service Network User Manual

"input":
"0x60806040523480156200001157600080fd5b506110016000806101000a815481 7 3ffffffffffffffff
T rAArFrffff02191690837 3fffff i rrrff16021790555060008090549061
0100029004 7 3ffffrfrfrrrrfrr e rrrrr e 16 7 S rff1663c92a780
16040805190810160405280600681526020017f745f6261736500000000000000000000000000000
000000000000000000000008152506040518263ffffffff167c0100000000000000000000000000000
0000000000000000000000000000281526004016200010191906200024a565b60206040518083038
1600087803h1580156200011¢57600080fd5b505af115801562000131573d6000803e3d6000fd5b50
5050506040513d601f19601f8201168201806040525062000157919081019062000174565b506200
02f4565b60006200016¢8251620002a3565b905092915050565b6000602082840312156200018757
600080fd5b600062000197848285016200015e565b9150509291505056506000620001ad82620002
98565hb808452620001¢3816020860160208601620002ad565b620001ce81620002e3565b60208501
0191505092915050565b60006013825271626173655f6b65792¢626173655f76616¢7565000000000
000000000000000006020830152604082019050919050565b6000600782527f626173655f6964000
0006020830152604082019050919050565h6
0006060820190508181036000830152620002668184620001a0565b9050818103",

"gasUsed": 100000000,

"blockNumber": 1,

"txld": "0x8ee0c68e222742h5h70878265d3fdbd3a8e0d549da42a298a4ae872ca4fhfd89",

"from": "0x08ac3132a6c¢c7e6caba7fhaf0521bb8h6f370ed35",

"to": "0x00",

"value": 0

5.4.4.9 Retrieving Block Information API

Corresponding block information can be queried according to block number or the block
HASH. The block number and block HASH cannot simultaneously be blank. When neither is

blank, query the block number first to get the block information.

1.

Interface address:
https://PCNGatewayAddress/api/fiscobcos/v1/node/getBlockInfo

Call Method: POST
Signature algorithm: required and refer to Section 5.4.4.1

Call parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
header
1 user unique 1D userCode String Y
2 DApp unique ID | appCode String Y
Body
When null,
1 Block Height blockNumber | string N blockHash cannot
be null
. When null,
2 Block Hash blockHash String N blockNumber

80

https://pcngatewayaddress/api/fiscobcos/v1/node/getBlockInfo

Blockchain-based Service Network User Manual

| | | | [cannot be null
Example:
{
"header":{"appCode":"CL1881038873220190902114314","userCode":"newuser"},
"body"":

{

"blockNumber":22,
"blockHash":"0xf27ff42d4be65329ale7b11365e190086d92f9836168d0379€92642786db7
ade"

h
"mac":"MEQCIBRhaM2szckWI9N9qgcgnaY XOXGQw7SflI9DIRvxcI3YVAIBt4XeNs+E
UjhBNSr3ljLRPZucsuGHXxfjt9RiaNIQS8cA=="}

signature value:

5. Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: authentication
. successful
1 Response ID code int Y "1 authentication
failed
Response . if code=0 then
2 Mespsage Msg String N can be null
Body
Block HASH blockHash String Y
Block Number blockNumber | Int Y
Parent Block arentBlockHa .
HASH Eh String Y
Block Size blockSize Int Y
Timestamp in
Block Time blockTime Int Y millisecond
format
author String Y
Transaction . [JTransaction
. transactions Y
Information Data
TransactionData
Transaction Id txld String Y
Block HASH blockHash String Y
Block Number blockNumber | Int Y
Gas Used gasUsed Int Y
from String Y
to String Y
value Int Y
input String Y
Example
"header": {
"code™: 0,
"msg": "Transaction successful”
+
"mac":

81

Blockchain-based Service Network User Manual

"MEQCIHX8SUEN/sDiPscd5li3X1GdseyggAyC209L92FjhzrfAiBLYFW/rguLkqz/Lz62Vt
X3m7Y 1nHgcFqecNdM7WgowGLQ==",
"body": {

"blockHash":
"0x199eca276b60473dd65f8036641684456694b419d89ef41b4953a9cdac848305",

"blockNumber": 1,

"parentBlockHash™:
"0xa6886112ee91470e35546432413ed372615f8d4c23fa82e8381b3e5b31219d4c",

"blockSize": 0,

"blockTime": 1587125168039,

"transactions": [

{

"txld":
"0x8ee0c68e222742b5b70878265d3fdbd3a8e0d549da42a298a4ae872cadfbfd89",

"blockHash":
"0x199eca276b60473dd65f8b36641684456694b419d89ef41b4953a9cdac848305",

"blockNumber": 1,

"gasUsed": 100000000,

"from": "0x08ac3132a6¢7e6caba7fbaf0521bb8b6f370ed35",

"to": ",

"value": 0,

"input™:
"0x60806040523480156200001157600080fd5b506110016000806101000a815481 7 3ffffffff
e rr A Frf0219169083 7 3ff i rr i if16021790555060
00809054906101000a9004 7 3ffffffrrf 167 3t
FAFFffff1663c92a78016040805190810160405280600681526020017f745f6261736500000
0008152506040518263ffffffff167c0
10002815260040162000
10191906200024a565b602060405180830381600087803b1580156200011¢c57600080fd5b5
05af115801562000131573d6000803e3d6000fd5b505050506040513d601f19601f82011682
01806040525062000157919081019062000174565b50620002f4565h60006200016c825162
0002a3565h905092915050565b6000602082840312156200018757600080fd5b6000620001
97848285016200015e565h91505092915050565b60006200012d8262000298565b80845262
0001¢3816020860160208601620002ad565b620001ce81620002e356506020850101915050
92915050565b6000601382527f626173655f6h65792¢626173655f76616¢756500000000000
0000000000000006020830152604082019050919050565h6000600782527f626173655f696
40060208301526040820190509
19050565b60006060820190508181036000830152620002668184620001a0565b905081810
360208301526200027b8162000213565b90508181036040830152000000"

}
1
}

¥

5.4.4.10 Retrieving DApp Block Height API
This interface is used to retrieve block height in a DApp.

1.

Interface address:
https://PCNGatewayAddress/api/fiscobcos/v1/node/getBlockHeight

Call Method: POST
Signature algorithm: required and refer to Section 5.4.4.1

82

https://pcngatewayaddress/api/fiscobcos/v1/node/getBlockHeight

Blockchain-based Service Network User Manual

4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique 1D userCode String Y

2 DApp unique 1D appCode String Y

body

Example:
{"header":{"appCode":"cl0006202003181926573677572","userCode":"USER000620200318195
1281835816"},"body":{},"mac":"MEQCIHb207hb0apDukOQBXkZftETsizDBaftnHxO9A9ux5
EtAIABUIFrFVYPWTSFiIU+WdA9HpXF/AJh0Yh2SXtL6h98m4eZw=="}

signature value:

5. Response parameters

5.4.4.11 Retrieving Total Count of DApp Transactions API

"body": {
"data"; "4"
}
}

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: authentication
. successful
1 Response ID code int Y “1- authentication
failed
9 Response msg String N if code=0 then
message can be null
Body
. . If code not 0, then

1 Block Height data string N leave blank
Example
{

"header": {

"code": 0,
"msg": "Transaction Successful"
}
"mac":

"MEQCICtCOdv4ZL72M3W0A9NAei2P0/PpKjlgl0Y5qeuzg61uAiA9D3TcB/+b2RMu
NwVq+X0vgigIHfM5NBhoTIPROgCPMA==",

This interface is used to retrieve the total count of transactions in a DApp.

1.

Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/getTxCount

83

https://pcngatewayaddress/api/fiscobcos/v1/node/getTxCount

Blockchain-based Service Network User Manual

2. Call Method: POST
Signature algorithm: required and refer to Section 5.4.4.1
4. Call parameters

| No. [Fieldname [Field [Type | Required | Remarks |
1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
header
1 user unique 1D userCode String Y
2 DApp unique 1D appCode String Y
body
Example:
{"header":{"appCode":"cl0006202003181926573677572","userCode":"USER000620200
3181951281835816"},"body":{},"mac":"MEQCIBRhaM2szckWI9N9gcgnaY XOXGQw7
SfII9DIRvxcl3YVAIBt4XeNs+EUjhBNSr3ljLRPZucsuGHxfjt9RiaNIQS8cA=="}
signature value:

5. Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: authentication
. successful
1 Response ID code int Y “1- authentication
failed
Response . if code=0 then can
2 Mesiage M3g String N be null
Body
1 Transacti_on data string N If code not 0, then
Information leave blank

Example
{

"header": {

"code": 0,
"msg": "Transaction Successful"
2
"mac'":

"MEQCIGgXINn3B9d/hC/ow01Jvi5eKDj59QbZRFdrCqcUeNCgAiApl4jkwhTY33qevl
RwsJ3veDBKXokvliSe3ck7SKIxmg==",
"body": {
"data™:
"{\"txSum\":5\"blockNumber\":5\"txSumRaw\":\" 0x5\" \"blockNumberRaw\":\"0x5\"'}"

¥
¥

5.4.4.12 Retrieving Total Count of Block Transactions API

This interface is used to retrieve the total count of transactions inside a block according the
block number in a FISCO DApp. The block number cannot be empty.

84

Blockchain-based Service Network User Manual

5.

Interface address:
https://PCNGatewayAddress/api/fiscobcos/v1/node/getTxCountByBlockNumber

Call Method: POST
Signature algorithm: required and refer to Section 5.4.4.1
Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique 1D userCode String Y

2 DApp unique ID appCode String Y

body

2 | Block number | blockNumber | string Y |
Example:

{
"header":{"appCode":"CL1881038873220190902114314","userCode":"newuser"},
"body"":

{

"grould™:1,

"blockNumber":22,

h

"mac":"MEQCIBRhaM2szckWI9N9qgcgnaY XOXGQw7SflI9DIRvxcI3YVAIBt4XeNs+EU
JhBNSr3IjLRPZucsuGHxfjt9RiaNI1QS8cA=="}

Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: authentication
1 Response ID code int Y successful
-1: authentication failed
2 Response msg String N if code=0 then can be
message null
Body
Block total
1 count of data string N If code not 0O, then leave
L blank
transactions info
data
Example
"header": {
"code": 0,
"msg": "Transaction Successful"
h
"mac":

"MEUCIQCMFbVhfHIX8pJ1mNI3Y pzKIBcXCpfmf2AniF/42ak9EwIgTWDEF+xW5139
ZDUnDSSSc82v8J1gIEf9izpl6eW/Rn4=",

85

Blockchain-based Service Network User Manual

"body": {
"data"; "1"
}
1

5.4.4.13 Registering Smart Contract Event API

Smart contract event in a DApp can trigger the off-BSN system to process further transactions.
This interface is used to register the smart contract event to be monitored.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/event/register

2. Call method: POST
Signature algorithm: required and refer to Section 5.4.4.1
Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String | Y

Header

1 user unique 1D userCode String | Y

2 DApp unique ID appCode String | Y

Body
1.Block

1 Event Type eventType String |Y generation event
2.Contract event
EventType is 1 then
can be null;
EventType is 2 then

2 Contract address contractAddress | String N EventType and
contract Name
cannot be null at the
same time
EventType is 1 then
can be null;
EventType is 2 then

3 Contract name contractName String N EventType and
contractName
cannot be null at the
same time

4 Notification URL notifyUrl String Y

5 Attached parameters | attachArgs String N

Example:

{"header":{"userCode":"USER0001202006042321579692440","appCode":"app000120200604232

3057101002","tld":""},"mac™:"MEUCIQCMP1T0ZS5e8594kY Z/8y5XfeyjRyUrPFpel QMES3SGp

Qlg08h608Kk/qpNTolvbNTwyAYNaw6HBiI9OKAH8Rp23j8s=","body":{"eventType":1,"contra

ctAddress":"0x866aefc204b8f8fdc3e45b908fd43d76667d 776", "contractName™:"BsnBaseContract

k1" "notifyUrl":"http://127.0.0.1:18080","attachArgs":"abc=123"}}

5. Response parameters

86

Blockchain-based Service Network User Manual

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
. 0: successful
1 Response ID code int Y -1 failed
2 Eﬂe:szggze msg String Y
Body
1 Event ID eventld String Y !\lull when the code
is not 0
Example
{
"header": {
"code": 0,
"msg": "Transaction successful"
3
"mac":
"MEUCIQDY STwYhh6EDHT5Z7ukcgXWILMjZW6WPNrv8Xt14RuH2Alglwa5K7NK4/TThzs8
z6VkpNNJU+dzAXeypFmfjkru88=",
"body": {
"eventld": "XXXXXXXXXXXXXXXXXXXXXXKXKX"!
}
}

5.4.4.14 Smart Contract Event Query API
Use this API to query the list of monitored smart contract events that have been registered.

1. Interface address:

https://PCNGatewayAddress/api/fiscobocs/v1 /event/query

2. Call method: POST
Signature algorithm: required and refer to Section 5.4.4.1
Call parameters

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unigue 1D userCode String Y

2 DApp unique 1D appCode String Y

Example:
{"header":{"userCode":"USER0001202006042321579692440","appCode":"app000120200604232
3057101002","tld":""},"mac™:"MEUCIQC2NTuUIsxQSWPpZwwhJK9zXEMaeY ZC04ArOP5Twy
p5AQIgFvZrskasuLiYfOGxd1F9TCetWHIfENg8BCi YfNS1xGk="}

5. Response parameters

87

https://pcngatewayaddress/api/fiscobocs/v1%20/event/query

Blockchain-based Service Network User Manual

1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
Header
0: Query
1 Response ID code int Y SU_CCGSSfUI
-1: Query
failed
2 Response Message | msg String Y
body
1 Block generation blockEvent [JblockEvent v Null _Nhen the
event code is not 0
2 Contract event contractEvent {]contractEven Y
blockEvent
1 | Dlockgeneration | eentig string v null when the
2 App code appcode String Y
3 User code userCode String Y
4 | Notification URL notifyUrl String Y
5 g;::ﬁ:g?;gt attachArgs String N
6 Create time createTime String Y UTCtime
contractEvent
1 E\I/(()e?qli generation eventld string v
2 App code appcode String Y
3 User code userCode String Y
4 Notification URL notifyUrl String Y
5 Q;:?f:g?;’;t attachArgs String N
6 Create time createTime String Y UTCtime
7 Contract address contractAddress | String Y
Example
{
"header": {
"code™: 0,
"msg": "Transaction succssful"
b
"mac":
"MEUCIQCQ/RjmIVKLKZw6jcLKBPh1BWKA4EIQEOO01VUAKPVQ1HTglgXUQ7Bn+y8
D8xQxYUwtZOoh/bpteAPCUtKXZeAiN7cMU=",
"body": {
"blockEvent™: [
{
"eventld": "ba537419953e4e219ceb0fe26ad5e125",
"appCode": "app0001202006042323057101002",
"userCode": "USER0001202006042321579692440",
"notifyUrl™: "http://127.0.0.1:18080",
"attachArgs": "abc=123",
"createTime": "0001-01-01 00:00:00.000 +0000 UTC"

88

Blockchain-based Service Network User Manual

}
I
"contractEvent™: [
{

"eventld": "ba537419953e4e219ceb0fe26ad5e126",
"appCode": "app0001202006042323057101002",
"userCode": "USER0001202006042321579692440",
"notifyUrl™: "http://127.0.0.1:18080",

"attachArgs": "abc=123",

"createTime": "0001-01-01 00:00:00.000 +0000 UTC",
“contractAddress”:” 0x866aefc204b8f8fdc3e45b908fd43d76667d7f76

¥
]
¥
¥

5.4.4.15 Remove Smart Contract Event API
This interface is used to remove a smart contract event’s registration from the event list.

1.

5.

Interface address:
https://PCNGatewayAddress/api/fabric/v1/chainCode/event/remove

Call method: POST
Signature algorithm: required and refer to Section 5.4.4.1
Call parameters

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique 1D userCode String Y

2 DApp unique 1D appCode String Y

Body

1 | Event ID | eventld | String | Y |
Example:
{"header":{"appCode":"CL20191107112252","userCode":"lessing"},"body":{"eventld":"bd3391de
edbe44a7ad5b7f80ce59abfa"},"mac:"MEQCIE3/CLG5LxZZN7En7LZvzthajwxHzpvDduXSsw4
Th1JFAIAXGJIAWVtyCKbtCasQGofCkgeBNOgZDNPgJIdTCtCi2SQ==""

Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: remove
1 Response ID code int Y successful
-1: remove failed

Blockchain-based Service Network User Manual

Response .
2 Message msg String Y
Example

{"header": {"code": 0, "msg": "Remove Event Successful"}, "body": null, "mac™:
"MEUCIQCaTFLIiY7pPjkwecmSsLXOth7k9bQj9Sblg+1nMVjkFAAIgUsizFO+f1+dxU3/
hPxjf/+na4qG6aQFftIIWGtMhIVI="}

5.4.4.16 Smart Contract Event Notification Message API

This interface is implemented on the off-BSN system side. When the PCN gateway receives
the notification of a triggered event, it uses this interface to notify the off-BSN system about
the execution result.

After receiving the notification successfully, the off-BSN system returns a string containing
“success”, otherwise, the gateway will send the notification again at 3, 12, 27, and 48 seconds
respectively, for a total of five times.

Call method: POST
2. Signature algorithm: required and refer to Section 5.4.4.1

3. Call parameters

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique 1D userCode String Y

2 DApp unique ID appCode String Y

body

1 Registered Event ID | eventld String Y

2 PCN ID orgCode String Y
Additional

3 Registered Event attachArgs String N parameters

parameters entered during

registration
Off-BSN system
uses this value
to judge if the
notification is

4 Re; ponse random nonceStr String Y alregdy .

string received. This

string remains
the same at the
repeated
notifications.

5 Event type eventType String Y

6 Event data eventData String Y

Example:

{"header":{"userCode":"USER0001202006042321579692440","appCode":"app000120200604232

3057101002"},"body":{"eventld":"5b5b865f8dc94ae59d215cf26aa81d69","orgCode":"ORG20200

41114171692360","appCode":"app0001202006042323057101002","attachArgs™:"abc=123","nonc

eStr:"52f080f27ff045eb87e21812d12ceed0","eventType™:1, "eventData":"{\"appld\":\"app000120

2006042323057101002\" \"blockNumber\":17 \"eventType\":1 \"groupld\":135}"},"mac":"MEUCI

90

Blockchain-based Service Network User Manual

QD3Sp6xul4DHy/GOb9z3nH6kQiSEzfXvZ/Hn/mfZXIAOgIgYsISRFBKSIGt4FrmxETfIfR4A8Ve
nCZHvxthMFUWRKc="}

5.4.4.17 Transaction Receipt Status

Under Key Trust Mode, the description of the returned transaction status when the off-BSN
system invokes the FISCO DApp smart contracts via PCN gateway APls are shown as follows:

status(Decimal/

Hexadecimal) message Explanation
0(0x0) None No Error
1(0x1) Unknown Unknown Error
2(0x2) BadRLP Invalid RLP Error
3(0x3) InvalidFormat Invalid Format Error
The length of smart contract exceeds gas
4(0x4) OutOfGasIntrinsic limit/smart contract invoking parameters
exceed gas limit
5(0x5) InvalidSignature Invalid Signature Error
6(0x6) InvalidNonce Invalid nonce Error
7(0x7) NotEnoughCash Not enough cash Error
8(0x8) OutOfGasBase Parameters too long (RC version)
9(0x9) BlockGasLimitReached Gas limit reached Error
10(0xa) Badlnstruction Bad Instruction Error
11(0xb) BadJumpDestination Bad Jump Destination Error
Out of gas to execute the smart contract/the
12(0xc) OutOfGas length of smart contract exceeds the limit.
13(0xd) OutOfStack Out of Stack Error
14(0xe) StackUnderflow Stack Under Flow Error
15(0xf) NonceCheckFail Nonce check failed Error
16(0x10) BlockLimitCheckFail Block limit check failed Error
17(0x11) FilterCheckFail Filter check failed Error
18(0x12) NoDeployPermission No Deployment Permission Error
19(0x13) NoCallPermission Illegal call Error
20(0x14) NoTxPermission Illegal transaction Error
21(0x15) PrecompiledError Precompiled Error
22(0x16) Revertlnstruction Revert Instruction Error
23(0x17) InvalidZeroSignatureFormat | Invalid Signature Format
24(0x18) AddressAlreadyUsed Address Already Used Error
25(0x19) PermissionDenied Permission Denied
26(0x1a) CallAddressError Call Address does not exist Error

5.5 Development SDK and Examples

5.5.1 BSN Gateway SDK Example

Normally, if an off-BSN system wants to communicate with a permissioned DApp service on
BSN, it has to call the public city nodes (PCN) gateway APIs. We provide a BSN Gateway
SDK (Software Development Kit) which can help developers quickly implement an off-BSN
system to call the PCN Gateway. Inside the SDK, we provide PCN gateway API encapsulation
which you can use to implement the transaction querying, transaction interface calling,
generate public key and private key locally, register user certificate, generate certificate
signature, encrypt and decrypt data, etc.

91

Blockchain-based Service Network User Manual

Download links:
https://github.com/BSNDA/PCNGateway-Go-SDK

https://github.com/BSNDA/PCNGateway-Java-SDK

https://github.com/BSNDA/PCNGateway-PY-SDK

https://github.com/BSNDA/PCNGateway-CSharp-SDK

5.5.2 Off-BSN System Examples

For your reference, the following examples are sample source code of chaincode/smart contract
invocation through gateway API by the off-BSN systems developed based on prefabricated
chain code/smart contract package, including Golang, Java, C#, and python language
examples.

» Fabric example

Download links:
https://github.com/BSNDA/FabricBaseChaincode

» FISCO BCOS example
Download links:

https://github.com/BSNDA/FISCOBaseContract

We invite experienced developers who are interested in BSN to work together to optimize the
SDK and sample packages. If you'd like to participate, please contact us on GitHub.

5.6 BSN Testnet Services

5.6.1 Overview

BSN Testnet is a free test environment for developers to test their permissioned DApp services.
Developers can publish an unlimited number of permissioned DApp services on the testnet.
Unlike the BSN production environment, it is not necessary to choose the public city nodes
and configure the invocation authorities of smart contracts when publishing DApp services on
the testnet. The Testnet supports Hyperledger Fabric and FISCO BCOS frameworks, and will
continue to integrate all BSN-adapted permissioned frameworks. Like all testnets do, we will
occasionally reset the Testnet and delete all smart contracts and ledger data. Therefore, please
do not use the Testnet as a commercial or production environment. We welcome developers to
try the service and provide us with feedback and suggestions as we continue to make
improvements.

5.6.2 Permissioned DApp Service Publication
The steps to publish a permissioned DApp service for testing are as follows:

1. Create a new test service

Go to the Permissioned Services > Testnet Services page to publish the service.

92

https://github.com/BSNDA/PCNGateway-Go-SDK
https://github.com/BSNDA/PCNGateway-Java-SDK
https://github.com/BSNDA/PCNGateway-PY-SDK

Blockchain-based Service Network User Manual

Testnet Services

My Test Services (The test network provides

and node gateway access for permissioned chain developers. The test network will be reset on 10/14/2020. All deployed test services will be deleted after the reset.)

Service Name Version Platform Type Deployment Date Status Action

Nothing to show here

Click Create a Test Service and input the service name, version, and select a platform type.

Testnet Services / Create a test service

100 Platform Type Fabric Global-1.4.3-secp256r1 ®
Plea
Upload Chaincode Package Start Deploying
Chaincode Name Version Chaincode Language Init Param Main Path Chaincode Package Action

Nothing to show here

Click Upload Chaincode Package to upload the chaincode or smart contract package. You
can upload multiple chaincode/smart contract packages in a permissioned DApp service.
Input the information and click Confirm to upload the package.

Add Chaincode Package @

2. Deploy the permissioned DApp service:
Click Start Deploying to deploy the service.

Create a test App?

93

Blockchain-based Service Network User Manual

Deployment committed!

Confirm |

After successfully deploying the chaincode/smart contract, developers can call it from their
off-BSN systems so that they can configure and debug the functions easily.

Note: To keep the resources stable, DevOps will periodically clean up the chaincode/smart
contract packages and ledger data on the Testnet.

5.6.3 Interchain Services on BSN Testnet

A demo version of Interchain Communications Hub (ICH) is now live on the Testnet,
integrating two interchain solutions based on the relay chain mechanism: (1) Poly Enterprise
developed by Onchain Tech and (2) IRITA developed by Bianjie Al. We welcome developers
to try out and provide feedback and suggestions, and we will continue to improve the
functionality and expect to release a commercial version in 2021.

For detailed descriptions and examples of ICH services, please refer to chapter 8, "Interchain
Services"

94

Blockchain-based Service Network User Manual

6 Dedicated Node Services

6.1 Overview

BSN dedicated node services apply BSN technologies including multi-layer framework
adaptation, virtualized container, automated deployment and node gateway to provide users
with "out-of-the-box™ blockchain cloud services. Users can quickly create their own dedicated
permissioned blockchain operating environment, configure node's CPU, memory, disk capacity
and other parameters in the BSN portal; they can independently manage nodes, publish smart
contracts, access node data and monitor blockchain operation status. The dedicated node does
not restrict APIs of the framework, and all APIs can be called by developers after they access
the dedicated node through the gateway.

Currently, dedicated node services allow users to build the permissioned chain services based
on ConsenSys Quorum (an open source, free and enterprise-focused blockchain framework) in
the BSN public city node built on AWS cloud platform. The version number of ConsenSys
Quorum is v20.10.0, and its consensus mechanism supports Raft and IBFT mechanisms.

6.2 Create Projects

1. In the BSN menu, click the Permissioned Service dropdown, in the list, click Dedicated
Node Services to open the page. The page lists the projects created by the user and shows
the status information of each project.

Project Name Frameworl k Cloud Platform Region Payment Status Payment Type Deployment Time Status Action

Details Unsubscribe
test ConsensSys Quorum~2... AWS Hong Kong Payment Successful Annually (UTC+8:00) 04/28/2021... Running

Edit Authorized Accoun

Details Unsubscribe
dgds Consensys Quorum-v2... AWS HongKong Payment Successfu Monthly (UTC+8:00) 04/28/2021... Running

Ediit Authorized Accoun

ABCCC Consensys Quorum-v2... AWS HongKong Unpaid Annually - Not Deployed Details Pay

3 items found. display 110 3 n

2. Click Create Project button and jump to the information page. This page contains 4
sections: Basic Information, Node Information, Gateway Information and Data Usage
Information.

® Basic Information: This section shows the basic information of the service, including
project name, framework, consensus mechanism (options include: Raft, IBFT), cloud
platform, and region.

95

Blockchain-based Service Network User Manual

Basic Information

ramewo ConsenSys Quorum-v20.10.0

AWS

Region Paris

® Node Information: The publisher can select the number of nodes and other resource
information, including CPU, memory and data capacity. The price is automatically
calculated based on the resources which publisher has selected.

Node Information

Please select the number of nodes and resource information:
Number of Nodes Host Configuration Data Capacity Price (USD/year)

1 2Core+4G 50G 1315.88

® Gateway Information: This section shows the information of the gateway node, and this
node contains Nginx service and a blockchain browser. Publisher does not need to select
resources.

Gateway Information

Note: This node contains Nginx service and a blockchain browser.
Number of Nodes Host Configuration Data Capacity Price (USD/year)

2717.85

® Data Usage Information: This section shows the unit data price for inbound gateway
traffic and outbound gateway traffic.

Data Usage Information

Inbound Data Usage (USD/GB) OQutbound Data Usage (USD/GB)

0.00 0.0

3. Click Next button to jump to Charge Details page. This page has 3 sections: Resource
Cost, Data Usage Information and Total Cost.

96

Blockchain-based Service Network User Manual

Dedicated Mode Services Create Project

>~ e

Resource Cost
Node Resource Cost Infermation
Number of Nodes Host Configuration Data Capacity Price (USD/year)

re+4G 50G 1413.43

Number of Nodes Host Configuration Data Capacity Price (USD/year)

re+8G 50G 2717.85
$378.71 (Pay by month) O $4131.28 (Pay by year) Discount of 5413.24

Data Usage Information

Inbound Data Usage (USD/GB) Qutbound Data Usage (USD/GB)

Total Cost

Total charges: $4131.28

Note:

m Go Back

Resource Cost: Resource Cost section contains the cost of node resources and gateway
resources. According to the resource cost information, the publisher can either pay by
month or pay by year. A discount will be applied when paying annually.

Data Usage Information: This section shows the unit data price for inbound gateway
traffic and outbound gateway traffic.

Total Cost: The total charges that the publisher should pay for.

After the publisher confirms the Charge details, click "Confirm" button to make payment.
The payment will be deducted from the user's personal (or corporate) account. If the
deduction fails, the bill will be kept for 72 hours before expiration. If you still want to open
a dedicated node service, you can resubmit or recreate the project by editing the current
project.

Note: In terms of dedicated node services payment, developers can make payments for

dedicated node services with the status of "not deployed” and pending payment, payment
failed, and "running" but in arrears. The payment will be debited from the user's personal
(or corporate) account. After the payment is successful, the developer should wait for the
deployment of the dedicated node.

6.3 Edit Projects

1.

Dedicated node services with the status of "not deployed” and billing invalid, pending
payment, payment failed, and "deployment failed™ and fully refunded can be edited. In the
edit page, developer can edit the basic information and node information.

Once edited the information, developer can jump to the Charge Details page to pay the bill.
After the payment is successfully made, developer can then wait for the deployment of the
dedicated node.

97

Blockchain-based Service Network User Manual

6.4 Delete Projects

Dedicated node services that are in the status of "not deployed" with expired billing and
"deployment failed™ with full refund can be deleted.

6.5 View Project Details

When the dedicated node has been deployed, the developer can view the detailed information
of the project. Click Details button in Action column to jump to the project details page. There
are 3 sections in this page: Basic Information, Resource Information and Deployment
Information.

Basic Information

Resource Information

2CoresaG

Deployment Information

DDDDDDD

® Basic Information: Project Name, Framework, Consensus, Cloud Platform, Region,
Payment Status and Created Date.

® Resource Information: Node resource and cost information, Gateway Cost Information
and Data Usage Information.

® Deployment Information: The developer can view node information and browser
information. Clicking on the "Details" button corresponding to the peer node, developer
can view the information of Access and Credentials, Transaction Manager cluster, and
Default Wallet.

98

Blockchain-based Service Network User Manual

Access and Credentials

RPC Endpoint https://bsnl7xt7eab.bsngate.com: 19602/node1 Copy

Transaction Manager (TM) Endpoint https://bsnl7xt7eab.bsngate.com: 19602/tm1 Copy

Transaction Manager Cluster

Public Key e Copy

Private Key e Copy
Default Wallet

Address 0x3abd477BFcf7c5861e9B805EC93542B6F4bfO57D0 Copy

Public Key i Copy

Private Key e Copy

By clicking on the "Details" button corresponding to gateway services, the developer can
obtain the URL address of the blockchain browser.

Access and Credentials

URL: https://bsnl Txt7eab.bsngate.com:19602/explorer Copy

6.6 Unsubscribe Projects

For the dedicated node service in Running status, the publisher can unsubscribe that project:

?

Are you sure you want to unsubscribe
from the project "test"?

Your unsubscripticn will generate a refund of $3752.57, the refund
request has been submitted, please wait for the review.
After the review is completed, you will be notified by email, please
check!

[.. el

For users who pay monthly for node and gateway resources, no refund will be generated when
unsubscribing; for users who pay annually for node and gateway resources, refunds will be
made at the point of time from the next month to the end of the billing cycle when unsubscribing.

99

Blockchain-based Service Network User Manual

The discount policy for annual payment will be cancelled and the refund will be calculated by
actual refundable months.

Are you sure you want to unsubscribe
from the project "test"?

Your unsubscription will generate a refund of $3752.57, the refund
request has been submitted, please wait for the review.
After the review is completed, you will be notified by email, please
check

6.7 Edit Authorized Account

Authorized account is mainly used for the verification of connecting nodes or blockchain
browsers to increase network security. Only the dedicated node with successful payment and
running can edit the authorized account. Click "Edit Authorized Account" button in the
dedicated node service list and jump to the page of editing the authorized account. Enter the

new username, new password, confirm the new password, and click the "Confirm" button to
edit the authorization account.

Edit Authorized Account

Current Authorized Username: 6y9BbiAMog594e3of1

New Authorized Username

A Vitherirad Dacowemrd
New Authorized Password

firm Authorized Password

100

Blockchain-based Service Network User Manual

7 Permissionless Services

7.1 Overview

The Permissionless service allows the participant to select a public city node to access a plan
that can be a free plan or a premium plan. When this is done, the participant can create a project,
obtain the project ID, key and access parameters which can be used to access selected public
chain node gateway. With the Permissionless service, the default plan is free for participants,
however, it has limited daily requests and projects. BSN has created several other plans that
can be upgraded to, for a certain fee, paid on a monthly basis.

7.2 Select Plans

On the page of Permissionless services, users can select different city nodes to participate in
Permissionless services. The nodes in blue at the top of the list represent those activated for the
free plan or premium plans on that city node. The nodes in grey at the bottom represent no
plans are purchased or used on that city node.

When you click and expand the public city node, you can see all public chain frameworks
supported by the city node. Users can decide whether to choose this city node as the access
entrance according to their needs. The public chain frameworks supported by different city
nodes may be different. In general, we recommend that developers choose a city node that is
close to them, so that the access speed will be relatively fast.

Select Your Plan:

SUpPonteciRuClciChalne: ETH-Mainnet ETH-Ropsten EOSIO-Mainnet EOSIO-Testnet EOSIO-Mainnet-Dfuse

ABCDEF (5) GHIJ (2) KLMN (4) OPQRST (2) UVWXYZ (0)

ETH-Mainnef t

—
ETH-Ropsten “ (')

[EOSIO-Mainnet
EOSIO-Testnet

EOSIO-Mainnet-Dfuse

Select Your Plan:

By default, participants on the Permissionless service have a free plan that is free to use up to
2000 daily requests, allowed TPS of 100 and maximum of 3 projects. However, a participant
can upgrade to a higher plan available on the platform. To select plans, follow these steps

101

Blockchain-based Service Network User Manual

1. On the Permissionless page, click Buy in the Select Your Plan section.

Select Your Plan: ‘ ‘

Supported Public Chains: Free Plan i0SI0-Mainnet-Dfuse
Basic Plan
professional Plan

Enterprise Plan

“ ‘ - |

2. In the Details page, locate the Select or Update your plan section and click Buy on the
appropriate plan.

Free Plan Basic Plan Professional Plan Enterprise Plan Custom Plan
FREE USD20.00/month USD100.00/month USD500.00/month
Daily Requests: 2,000 Daily Requests: 40,000 Daily Requests: 250,000 Daily Requests: 1,500,000 Daily Requests: Custom
Allowed TPS: 100 Allowed TPS: 100 Allowed TPS: 100 Allowed TPS: 100 Allowed TPS: Custom
Number of Projects: 3 Number of Projects: 10 Number of Projectss 50 Number of Projects: 100 Number of Projects; Custom
support@bsnbase.com

3. Inthe Are you sure you want to buy package window, click the project agreement and
click Confirm.

Are you sure to select Basic Plan?

Read and agree to BSN public chain project protocol/agreement.

4. In the Select Payment Method page, select the appropriate payment method and click
Next Step to be redirected to Stripe.

The BSN portal never records and stores any credit card information.

102

Blockchain-based Service Network User Manual

Checkout
Overview
Basic plan 20.00USD/month
Daily Requests: 40000
Allowed TPS: 100
Number of Projects: 10

Payment Method

—
Pay by Credit Card

VISA @ £38 ~2 [N

Description Quantity Price

Basic plan 1 20.00USD

Total: 20.00usD

Go back

You will be directed o Stripe. We never store credit card information

5. On the Stripe Payment page, click Pay to display the Receipt and Invoice.

103

Blockchain-based Service Network User Manual

Invoice from RED DATE (HONG KONG) TECHNOLOGY

LIMITED

Billed to billjackson5
Invoice #841DA2D2-0001

$20.00 USD due Aug 13, 2020

Card number MM/ YY CVC

DESCRIPTION QTy PRICE TOTAL
"Basic Plan" Permissionless service 1 $20.00 $20.00
+ PDF Amount due $20.00

If you have any questions, contact RED DATE (HONG KONG) TECHNOLOGY
LIMITED at support@bsnbase.com or call +86 10 8646 2811.

7.3 Create and Manage Projects

With the Permissionless service, projects can be created in a much simpler way when compared
with Permissioned service as plans are embedded into the project, making it easier for
participants to manage. To create and manage projects follow these steps:

1. In the Permissionless Service page, click Create new project in the development plan
section.

104

Blockchain-based Service Network User Manual

&> HongKong PCN
powarod by AWS

Daily Requests Used: 0/2000
Supported Public Chains (13):

ETH-Mainnet ETH-Ropsten EOSIO-Mainnet EOSIO-Testnet EOSIO-Mainnet-Dfuse

Next Billing Date: N/A

Buildable Projects: 0/2 m \ —

2. Inthe Create a new project window, enter the Project Name, select the Public Chain to
access from the dropdown list, input the Daily Requests number if needed. Then click
Create Project. The Daily Requests number is optional, and it is used to control the TPD
(transactions per day) for this project.

Create a Mew Project

California PCN

“Project Mame

Praject Mame

*Choose the Chain

Choose the Chain

Daily Requests

0~2000

Create Project

Go Back

This will automatically create the project and list it in the Project Information tab.

After a project has been created it can be managed using available tools for the project. To
manage a project, follow these steps:

1. Locate the project to be managed, click Upgrade to display the Plans page.
2. Select the appropriate plan to Upgrade to and click confirm to display the payment page.

105

Blockchain-based Service Network User Manual

3. Toenable the project key, in the Permissionless Service page, click Project list to display
the list of projects. In Action, click Enable Key to enable the project key. Then the
information page on enabling the key will be displayed. Click Confirm.

Project

o Public Chain Daily Requests Project ID Project Key Access Address Action
lame
http://192.168.1.187:8080/api/5b
5b14244913ebe275d770ed 14244913ebe275d770edcb1502cc
ETHmain ETH-Mainnet 200 cb1502cc6e6e7c7dc3f670aa l"‘l
865f5068828e49923¢ 6e6e7c7dc3f670aad65{5068828e4
9923¢/ETH-Mainnet/rpc
W Delete

4. To update a project key, click Update Key. Then the information page on updating the
key will be displayed. Click Confirm.

Project

N Public Chain Daily Requests Project ID Project Key Access Address Action
ame
http://192.168.1.187:8080/api/5b
5b14244913ebe275d770ed aaf3e633160e09b6064a27b0c8ae4 14244913ebe275d7706dcb1502cc
ETHmain ETH-Mainnet 200 cb1502ccbebe7c7dc3f670aa 4a3fbb10299e115959bbae838bc19
865f506882849923¢ fbbe23 6e6e7c7dc3f670aa865f5068828e4
9923¢/ETH-Mainnet/rpc
© Disable Key
1 items found, display 1to 1 W Delete n

5. To delete a project, click Delete. A confirmation message will be displayed asking if you
wanted to delete the project. Click Confirm to delete it.

Are you sure you want to delewe?

Confirm

7.4 Off-BSN system Access Guide

7.4.1 Overview

BSN provides shared or dedicated public chain nodes for public chain application developers.

Developers can quickly access all public chain networks by accessing the gateway of the public
city node.

106

Blockchain-based Service Network User Manual

BSN City Node 1

After developers select the public chain framework (netcode) in the BSN portal to create the
public chain project, they will get the gateway’s domain name address (url), project number
(id), project key (key), public chain supportive protocol {protocol} and public chain gateway
API address.

The developer accessing the PCN gateway via HTTP should concatenate the request address
in "https://{url}/api/{id}/{netcode}/{protocol}/{subUrl}" format. If project key is enabled, "x-
APi-key:{key}"should be added to the request header. If the public chain nodes provide
multiple components, they should add {subUrl}; If the Nervos CKB has an Indexer component
service in addition to the RPC service, "{subUrl}" should fill the indexer value, {subUrl} is
optional.

The developer accessing the node gateway via WebSocket, should concatenate the Key and
SubUrl to the path address of the target machine and concatenate to the format of
{url}/api/{id}/{key}/{netcode}/{subUrl}. If the project key is not enabled, then the {key} filed
should be null. If there is no subUrl, this field can be null. That is, developers can think of the
content after/API as the method name of a target machine.

7.4.2 Ethereum

Ethereum is a global, open-source platform for decentralized applications. On Ethereum, you
can write code that controls digital value, runs exactly as programmed, and is accessible
anywhere in the world.

For more resources, please visit: https://ethereum.org/en/developers/

The BSN public city node gateway is adapted to the Ethereum JSON RPC API, so developers
can initiate transaction requests to the node gateway via HTTP JS-RPC. For detailed docking
instructions please visit: https://eth.wiki/json-rpc/API

The following table shows additional error code definitions for public city node gateways:

Error code Transaction error code Error code description
500 . .
-32099 Service internal exception
503
429 -32098 TPS, TPD current limit

107

https://ethereum.org/en/developers/
https://eth.wiki/json-rpc/API

Blockchain-based Service Network User Manual

401 -32097 Authentication permission failed

743 EOS

EOSIO is a blockchain platform designed for the real world. Built for both public and private
use cases, EOSIO is customizable to suit a wide range of business needs across industries with
rich role-based security permissions, industry-leading speeds and secure application
processing.

For more resources, please visit: https://developers.eos.io

The BSN city node gateway is adapted to EOSIO's JSON RPC API, so developers can
initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking
instructions please visit:

https://developers.eos.io/manuals/eos/latest/nodeos/plugins/chain api plugin/api-
reference/index#operation/get block

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description
401 3090000 Authentication permission failed
429 3210000 TPS, TPD current limit
500 Service internal exception
3100000 - -
503 Service Unavailable
7.4.4 Nervos

The Nervos Network is an open source public blockchain ecosystem and collection of
protocols solving the biggest challenges facing blockchains like Bitcoin and Ethereum today.

For more resources, please visit: https://docs.nervos.org/

The BSN city node gateway is adapted to the Nervos JSON RPC API, so developers can
initiate transaction requests to the node gateway via HTTP JSON-RPC.

For detailed docking instructions please visit:

https://docs.nervos.org/docs/reference/rpc

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description
500 L .
-32099 Service internal exception
503
429 -32098 TPS, TPD current limit
401 -32097 Authentication permission failed

108

https://developers.eos.io/
https://developers.eos.io/manuals/eos/latest/nodeos/plugins/chain_api_plugin/api-reference/index#operation/get_block
https://developers.eos.io/manuals/eos/latest/nodeos/plugins/chain_api_plugin/api-reference/index#operation/get_block
https://www.nervos.org/#network
https://docs.nervos.org/
https://docs.nervos.org/docs/reference/rpc

Blockchain-based Service Network User Manual

745 NEO

NEO is an open-source, community driven platform that is leveraging the intrinsic advantages
of blockchain technology to realize the optimized digital world of the future.

For more resources, please visit: https://neo.org/dev

The BSN city node gateway is adapted to the NEO JSON RPC API, so developers can
initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking
instructions please visit:

https://docs.neo.org/docs/zh-cn/reference/rpc/latest-version/api.html

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description
500 . .
-32099 Service internal exception
503
429 -32098 TPS, TPD current limit
401 -32097 Authentication permission failed
7.4.6 Tezos

Tezos is an open-source platform for assets and applications backed by a global community of
validators, researchers, and builders. Tezos is designed to provide the safety and code
correctness required for assets and other high value use cases. Its native smart contract
language, Michelson, facilitates formal verification, a methodology commonly used in
mission-critical environments such as the aerospace, nuclear, and semiconductor industries.

For more resources, please visit: https://developers.tezos.com

The BSN city node gateway is adapted to the Tezos JSON RPC API, so developers can
initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking
instructions please visit:

https://tezos.qitlab.io/api/rpc.html

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description
401 3090000 Authentication permission failed
429 3210000 TPS, TPD current limit
500 Service internal exception
3100000 - -
503 Service Unavailable
7.4.7 IRISnet

Within the ecosystem of IRISnet, the core innovation is embodied in three aspects: integrate
the service-oriented infrastructure into the Cosmos network; integrate business services

109

https://docs.neo.org/docs/zh-cn/reference/rpc/latest-version/api.html
https://developers.tezos.com/
https://tezos.gitlab.io/api/rpc.html

Blockchain-based Service Network User Manual

provided by heterogeneous systems, including public chains, consortium chains, and existing
systems; the connectivity of services is realized through the blockchain Internet.

For more resources, please visit: https://www.irisnet.org/docs

The BSN city node gateway is adapted to the IRISnet JSON RPC API, so developers can
initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking
instructions please visit:

https://www.irisnet.org/docs/light-client/intro.html#rest-apis

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description
500 L .
-32099 Service internal exception
503
429 -32098 TPS, TPD current limit
401 -32097 Authentication permission failed

7.4.8 dfuse-eos

dfuse is a massively scalable open-source platform for searching and processing blockchain
data. It provides real-time, historical and fork-aware search engine (dfuse Search), transaction
push guarantees (dfuse Push Guarantee), transaction lifecycle (dfuse Lifecycle), historical state
services (dfuse State), and many more blockchain building blocks. dfuse empowers developers
with capabilities to build modern blockchain applications with fast, fluid interfaces that deliver
exceptional user experiences.

For more resources, please visit: https://docs.dfuse.io

The current dfuse EOS mainnet access on BSN is available through dfuse Community Edition
hosted by EOS Nation. Try out the dfuse API features on the [GraphiQL playground]
(https://eos.dfuse.eosnation.io/graphigl).

If your needs exceed the Community Edition limits, please contact dfuse to set up an
[Enterprise plan] (https://dfuse.io/zh/pricing/?utm_source=BSN).

The BSN PCN gateway is equipped with sfuse's JSON RPC API and GraphQL, so developers
can issue EOSIO transaction requests to the node gateway via HTTP JSONrpc or GraphQL.

For detailed instructions, please visit the link: https://docs.dfuse.io/reference/eosio

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description
401 3090000 Authentication permission failed
429 3210000 TPS, TPD current limit
500 Service internal exception

3100000 - -
503 Service Unavailable

110

https://www.irisnet.org/docs
https://www.irisnet.org/docs/light-client/intro.html#rest-apis
https://docs.dfuse.io/
https://eos.dfuse.eosnation.io/graphiql
https://dfuse.io/zh/pricing/?utm_source=BSN
https://docs.dfuse.io/reference/eosio

Blockchain-based Service Network User Manual

7.4.9 Solana

The Solana Program Library (SPL) is a collection of on-chain programs targeting the Sealevel
parallel runtime. These programs are tested against Solana's implementation of Sealevel,
solana-runtime, and deployed to its mainnet. As others implement Sealevel, we will graciously
accept patches to ensure the programs here are portable across all implementations.

For more resources, please visit below websites:

Solana Documentation Homepage: https://docs.solana.com/

Solana Program Library (SPL) Documentation: https://spl.solana.com/

JavaScript API Reference: https://solana-labs.qgithub.io/solana-web3.js/

Developing apps on Solana: https://docs.solana.com/apps

The BSN city node gateway is adapted to the Solana JSON RPC API and WSS, so developers
can initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed
docking instructions please visit: https://docs.solana.com/apps/jsonrpc-api

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description
401 3090000 Authentication permission failed
429 3210000 TPS, TPD current limit
500 Service internal exception

3100000) -
503 Service Unavailable

7.4.10 ShareRing

ShareRing is built on distributed ledger technology, allowing for a transparent, decentralized
ecosystem.

For more resources, please visit: https://sharering.network/media-kit.html

The BSN city node gateway is adapted to the ShareRing JSON RPC API and WSS, so
developers can initiate transaction requests to the node gateway via HTTP JSON-RPC. For
detailed docking instructions please visit:
https://sharering.network/resources/ShareRing+AP1+Overview.pdf

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description
401 3090000 Authentication permission failed
429 3210000 TPS, TPD current limit
500 Service internal exception

3100000 - -
503 Service Unavailable

111

https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://docs.solana.com/
https://spl.solana.com/
https://solana-labs.github.io/solana-web3.js/
https://docs.solana.com/apps
https://docs.solana.com/apps/jsonrpc-api
https://sharering.network/media-kit.html
https://sharering.network/resources/ShareRing+API+Overview.pdf

Blockchain-based Service Network User Manual

7.4.11 Algorand

Algorand built and developed the world’s first open, permissionless, pure proof-of-stake
blockchain protocol that, without forking, provides the necessary security, scalability, and
decentralization needed for today’s economy. With an award-winning team, Algorand enables
traditional finance and decentralized financial businesses to embrace blockchain for
decentralized applications.

For more developer resources, please visit: https://developer.algorand.org/

The BSN city node gateway is adapted to the Algorand Rest API, so developers can initiate
transaction requests to the node gateway via Rest. Developers can also use Algorand SDK to
connect to BSN nodes for developing and deploying applications.

For detailed docking instructions please visit:

https://developer.algorand.org/docs/reference/sdks/

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description
401 401 Authentication permission failed
429 429 TPS, TPD current limit
500 500 Service internal exception
503 503 Service Unavailable
7.4.12 BTY

BTY (Bityuan) is a simple, stable and scalable public chain network. It is developed using the
technology of Chain33 and is the world's first public chain project with a multi-chain
(parachain) architecture.

Multiple parachains can be developed on the BTY blockchain. The BTY’s main chain is
responsible for transaction settlement, and smart contracts and virtual machines are deprived
from the main chain and put on the parachain for independent executions, and multiple
parachains co-exist to improve computing efficiency. In addition, parachains can be
interconnected by the main chain.

At present, there are a number of application cases of parachain based on BTY public chain,
such as DeFi, C2C trading, royalty points, prepaid cards, games, real estate, commaodities,
smart clearing, etc.

For more developer resources, please visit: https://chain.33.cn/

The BSN City Node Gateway is adapted to the BTY JSON RPC API, so developers can initiate
BTY transaction requests to the node gateway by means of JSON-RPC.

For detailed docking instructions, please visit: https://chain.33.cn/document/142

112

https://developer.algorand.org/
https://developer.algorand.org/docs/reference/sdks/
https://chain.33.cn/
https://chain.33.cn/document/142

Blockchain-based Service Network User Manual

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description
401 3090000 Authentication permission failed
429 3210000 TPS, TPD current limit
500 Service internal exception

3100000 - -
503 Service Unavailable

7.4.13 Oasis Network

The Oasis Network, as a next generation blockchain, is the first scalable, privacy-enabled
blockchain network for open finance and a responsible data economy. Combined with its high
throughput and secure architecture, the Oasis Network is able to power private, scalable DeFi
- expanding it beyond traders and early adopters to a mass market, unlocking new use cases
like under-collateralized loans, private AMMs and more. The Oasis Network’s privacy features
can also create a new type of digital asset called CryptoData, which allows users to control
their data and earn rewards. It is achieved through an innovative technical architecture that
separates computation and consensus layers into ParaTime and consensus layers.

Oasis Network's powerful, privacy-preserving design has been used in the following projects:
1) CryptoSafe.

2) Nebula Genomics, the first consumer genomics application that gives users complete
control over their genomes.

(3) Fortune 500 Healthcare Company, for confidential data sharing.
Investors of Oasis Network include al6z, Accel, Polychain, Pantera, I0SG, etc.

To learn more information, please join the Oasis Community at t.me/oasisprotocolcommunity
and follow us on Twitter @oasisprotocol.

For more resources, please visit: https://docs.oasis.dev/general/

The BSN city node gateway is adapted to the Oasis Network REST API, so developers can
initiate transaction requests to the node gateway via HTTP REST. For detailed docking
instructions please visit: https://www.rosetta-api.org

Error code Error code description
401 Authentication permission failed
429 TPS, TPD current limit
500 Service internal exception
503 Service Unavailable

7.4.14 Polkadot

113

https://docs.oasis.dev/general/
https://www.rosetta-api.org/

Blockchain-based Service Network User Manual

Polkadot is a next-generation blockchain protocol that unites an entire network of purpose-built
blockchains, allowing them to operate seamlessly together at scale. Because Polkadot allows
any type of data to be sent between any type of blockchain, it unlocks a wide range of real-
world use cases. By bringing together the best features from multiple specialized blockchains,
Polkadot paves the way for new decentralized marketplaces to emerge, offering fairer ways to
access services through a variety of apps and providers. Polkadot’s design offers several
distinct advantages over existing and legacy networks, including heterogeneous sharding,
scalability, upgradeability, transparent governance and cross-chain composability.

For more resources, please visit: https://substrate.dev/

The BSN city node gateway is adapted to the Polkadot JSON RPC API, so developers can
initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking
instructions please visit: https://polkadot.js.org/docs/substrate/rpc/#chain

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code | Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500 Service internal exception
3100000 : -

503 Service Unavailable

7.4.15 Casper

CasperLabs, the developer of the Casper Network, provides professional services and support
for organizations building on the Casper network. Guided by open-source principles,
CasperLabs is committed to supporting the next wave of blockchain adoption among
businesses and providing developers with a reliable and secure framework to build private,
public and hybrid blockchain applications. Its team possesses deep enterprise technology
experience, hailing from organizations including Google, Adobe, AWS, Dropbox and
Microsoft.

For more resources, please visit: https://casperlabs.io/

The BSN city node gateway is adapted to the Casper JSON RPC API, so developers can initiate
transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking
instructions please visit:

https://docs.rs/casper-node/latest/casper node/rpcs/index.html

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code | Error code description

401 3090000 Authentication permission failed
429 3210000 TPS, TPD current limit

500 3100000 Service internal exception

114

https://substrate.dev/
https://polkadot.js.org/docs/substrate/rpc/#chain
https://casperlabs.io/
https://docs.rs/casper-node/latest/casper_node/rpcs/index.html

Blockchain-based Service Network User Manual

503 Service Unavailable

7.4.16 Findora

Findora’s mission is to build a decentralized financial network for issuing confidential assets
and smart contracts. Findora has created a system that achieves privacy-preserving
transparency. Its flexible technology can also be used by institutions to replace their current
infrastructure or deploy in the cloud — all interoperable with the public Findora network.

For more resources, please visit: https://findora.org/

The BSN city node gateway is adapted to the Findora REST API, so developers can initiate
transaction requests to the node gateway via HTTP REST. For detailed docking instructions
please visit:

https://api.findora.org/

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code | Error code description
401 3090000 Authentication permission failed
429 3210000 TPS, TPD current limit
500 Service internal exception
3100000 : -
503 Service Unavailable
7.4.17 Near

NEAR is a Proof-of-Stake Layer-1 public blockchain platform built with usability and
developer accessibility in mind. With a novel sharding mechanism called Nightshade, NEAR
can scale limitlessly and offers familiar user experiences just like the web today.

For more resources, please visit: https://near.org/

The BSN city node gateway is adapted to the Near JSON RPC API, so developers can initiate
transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking
instructions please visit:

https://docs.near.org

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code | Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500 Service internal exception
3100000 . -

503 Service Unavailable

115

https://findora.org/
https://api.findora.org/
https://near.org/
https://docs.near.org/docs/api/quickstart

Blockchain-based Service Network User Manual

116

Blockchain-based Service Network User Manual

8 Interchain Services

A cross-chain mechanism is the interoperability between two or more relatively independent
blockchains, and it enables the swap and transfer of data, asset and information. On the BSN,
every blockchain maintains its own transactions, consensus, and ledgers, carrying business data
and information of different DApps. The cross-chain mechanism realizes data sharing and
business collaboration among blockchains, and to break the silos between chains, allows data
to flow securely and reliably across multiple chains. The main functions of the cross-chain
system include: cross-chain registration management mechanism, cross-chain contract
functions, cross-chain transaction verification, cross-chain message routing protocol, cross-
chain transaction atomicity guarantee, etc.

IRITA Node —Crr EEEREEEEE IRITA Node
Poly Node St EEpRrs Poly Node

The BSN Interchain Communications Hub (ICH) adopts the cross-chain protocol of
heterogeneous chains and the design of double-layer structure, using relay chains as cross-
chain coordinators, multiple heterogeneous chains as cross-chain transaction executors, and
acts as a relayer of cross-chain data. By solving validity, security, and transactional issues of
cross-chain data, a secure, easy-to-use and efficient cross-chain system is implemented:

e Supports both isomorphic and heterogeneous chains.
e Supports any information to cross the chains.

* Very easy to access. Application chains do not need to do custom development adaptation,
just deploy one smart contract per chain.

* Transactional support, supporting not only scenarios with the need for ultimate consistency
of transactions, but also scenarios with the need for strong consistency of transactions,
with support for any transaction, and scalable to any number of chains.

® Cross-chain protocols are secure and reliable, based on cryptography and consensus
algorithms, and each application chain can verify the legitimacy of cross-chain
transactions on its own, thus ensuring the security of cross-chain interactions.

The BSN’s “Interchain Communications Hub” (ICH) is now commercially available and
integrates with Onchain's Poly Enterprise cross-chain solution. It supports cross-chaining
between permissioned chains and cross-chaining between permissioned chains and ETH
Ropsten testnet and NEO testnet. The IRITA-based cross-chain solution is also being adapted
and is expected to be commercially available in the next iteration.

A demo version of ICH is also live on the BSN Testnet, integrating two interchain solutions
based on the relay chain mechanism: Poly Enterprise developed by Onchain and IRITA

117

Blockchain-based Service Network User Manual

developed by Bianjie Al. We welcome all developers to try out and provide feedback and
suggestions to us and we will continue to improve the interchain functionality.

8.1 Interchain Service Management

8.1.1 Open Interchain Services

There are two ways to open Interchain Services: permissioned DApp service publishers can
either open it when upgrading their services, or they can open Interchain Services separately.

1) Open the Interchain Service when upgrading the permissioned service.

For published permissioned services, publishers can open Interchain Services through the
Service Upgrade function:

On the home page, click Permissioned Services -> Published Services, click Service
Upgrade in the Action column to enter the service upgrade page.

Eam Blockchain-based @ UserManual B Documentation & Message Center 2, Profile
Service Network

Platform Type Participants Status Payment Status Action

m e

Configuration Upgrade

Invite Participants

In the Interchain Services section, select Yes to activate Interchain Services, and choose the
Interchain Service Protocol. Then, click Confirm to submit the service upgrade. After the
system review and approval, the Interchain Service is successfully opened.

Published Services Service Upgrade

Interchain Services

Activate Interchain Servicess @ Yes Mo
Interchain Service Protocol: Poly Enterprise @
Billing rules: The source chain generates bill according to the actual number of calls per week, and debit from source chain's account. Call

Upload Chaincode Package @

118

Blockchain-based Service Network User Manual

Note: If you open Interchain Services only, you don't need to upload new chaincode package;
after opening the service, when calling across the chain, both source chain and target chain
need to communicate off the BSN about cross-chain parameters, methods and specifications.

2) Directly open the service in Interchain Services

On the home page, click Interchain Services

Blockchain-based
Em Service Network @ user Manual 2

Testnet Services Intercha
Home

Permissionless Services
Service Name Platform Type Version Interchain Service Protocol Activation Time Status

Permissioned Services
InterchainServiceTest1 Fabric-1.4.3-secp256r1 1.0.1 Poly Enterprise (UTC+8:00) 01/28/2021 18:00:15 Pending deactive

Published Services

. . 1 items found, display 1to 1
Participated Services

Activate Interchain Services

Testnet Services

My Certificates

Click Activate Interchain Services button to enter Select services page, click Activate
Interchain Services in the Action column.

Blockchain-based ser Manual B Documentation &) Message Center 2,
HE Service Network @ User Manual & D tat Message Center &,

Service Name Version Platform Type Publish Tima Participants Status Payment Model Payment Status Action
Pern
S abric- Plisned fam I:l
Interchain Services
User C 2 hed Fa
Developer Community
=NTFN T Pay
T hed v
F r T blished Payment 5!
T hed P

The following steps can refer to Open the Interchain Service when upgrading the
permissioned service.

Note: For activated interchain services, users cannot change the interchain service protocols.
The protocol can only be changed by re-opening the interchain services.

8.1.2 View Interchain Services

On the home page, click Interchain Services, users can find the service list of their activated
interchain services.

119

Blockchain-based Service Network User Manual

Blockchain-based o
- User Manual B2 Documentation £ Message Center Pre
EE Service Network @ N i
Hor
Home
2 ionless 5
Service Name Platform Type Version Interchain Service Protacol Activation Time Stat Acti
Permissione d Services
B Fabric-1.4 3-secp256r1 60.2 Poly Enterprise UTC+8:00) 01/29/2021 16:0252 Activated I:I
Interchain Services
Fabric-1.4.3-5ecp255 10 Poly Enterprise ; 117:44 1
User Cent !
Developer Community rongyackFE Fabric-1.4.3-secp256 0 Poly Enterprise vated

Select the service to be checked, click View in the Action column, select Cross-chain
Information, users can check the chain ID, management contract address, management
contract name and cross-chain information.

nam :I;:l::ral:;:?&d @ user Manual & Documentation & Message

Home

CPIPIN (- O PR SR SRR ey [P ART
B8 Permissioned Services
Poly Cross-chain Information

Published Services

Participated Services

Participation Manag
Testnet Services
Cross-chain call information
My Certificat
4 oFFE
Interchain Services i
Amount Action

Date

Developer Community

On the Cross-chain Information page, click Details button to jump to Call Details page. Select
the parameter and click Query to retrieve the detailed cross-chain call information.

n Blockchain-based @ User Manual @ Documentation 3 Message Center 2, Profile
Service Network
Hon

Hom

Per

P ed S¢

Published Services

Participated §

Par agen

Test
Source Chain Platform Target Chain Platform Interchain Service

Source Chain Name Target Chain Name Call Time Status Action

Type Type Protocol

o =
Go to List of cross-chain call details section, click Details button in Action column to enter

the Basic Information page, you can view the basic information of the cross-chain call details,
as shown in the figure:

120

Blockchain-based Service Network User Manual

Blockchain-based [
E Service Network Q@ User Manual

Home Call Details
Home

Permissionless Services Basic Information
Permissioned Services Source Chain Name: rongyaof FF Source Chain Platform Type: Fabric-1.4.3-secp256r1
Source Chain Transaction Hash: 2343344

Published Services

Target Chain Name: test_target Target Chain Platform Type: Fabric-14.3-secp256K1
Participated Services

Target Chain Transaction Hash: hash001
Participation Management
Interchain Service Protocol: Poly Enterprise Call Time: (UTC+8:00) 01/26/2021 14:27:45

Testnet Services
Status: Call successful

My Certificates

Interchain Services

User Center

Developer Community

8.1.3 Deactivation and Activation of Interchain Services
1) Deactivation of Interchain Services
On the home page, click Interchain Services, users can see a list of their activated interchain

services. Select the service which needs to be deactivated and click Deactivate button in
Action column.

?

Are you sure to deactivate the interchain service of "myfabric123" ?

m

Click Confirm in the pop-up message to deactivate the interchain service.
Note: It takes a few minutes to deactivate the interchain service, please be patient.
2) Activation of Interchain Services

On the home page, click Interchain Services, users can see a list of their activated interchain
services. Select the service which needs to be activated and click Activate button in Action
column.

121

Blockchain-based Service Network User Manual

Click Confirm in the pop-up message to activate the interchain service.

8.2 Interchain Services based on Poly Enterprise

8.2.1 Overview

A complete cross-chain transaction requires application contracts for multiple chains. For
example, there is an application contract on the Ethereum Ropsten and a FISCO BCOS
application contract on the BSN. These two contracts can interact across chains through the
cross-chain protocol to ensure the correctness of the information. The cross-chain contract
includes a management contract and an application contract. The management contract
implements the core logic of the cross-chain protocol, developed by the BSN development
team and is deployed in each chain; the application contract needs to be implemented by
blockchain application publishers according to the cross-chain protocol and deployed in the
blockchain network.

Management contracts include the following implementations.

1. ETH and FISCO BCOS

e EthCrossChainManager: contains logic of management.
e EthCrossChainData: used to save and manipulate data.
e EthCrossChainManagerProxy: used to implement logical contract upgrades.

2. Neo
e CCMC: contains the logic of management.
3. Fabric
e CCMC: contains the logic of management.
4. BSN Testnet Cross-chain management contract address

The following table shows the framework names, chain IDs, and cross-chain contract names
or addresses for Poly Enterprise-based cross-chain services.

China Fabric 88 ccm myhellopoly

122

Blockchain-based Service Network User Manual

FISCO 98 0x8f866dE652d34308De82E7D | 0x2e98f68147887288f1leb2eb
BCOS aF504D1af4B4b05E9 d065ccc46be9bcaf9
International Fabric 89 ccm myhellopoly
FISCO 99 0xaF92fAe702C24CF5B214645 | 0xd8e0013aa9b41bb946aeela
BCOS AdFE25821b5664667 848b5665¢c17951200
Ropsten Ethereum 5 0xF6993b7d73B2827420689Db | 0x0b89e4f2103c4700de5ae96f
c0b3068D24E6e467F 370f3708c5572211
Testnet Neo 4 0x10b6edbb6e44188d0ff390654 | 0x0ea9e760ca350d950d01b32
42081b13bbd109b €35127b3f7c0c18b5

The application cross-chain contains the following functions:

1. Outbound: The source chain's application contract initiates a cross-chain transaction
request and transfers this request from the source chain to the target chain. The user can
call a self-defined method in the source chain's application contract which calls the
‘crossChain’ method of the management contract. This will send the cross-chain data
through events.

2. Inbound: The target chain application contract receives the cross-chain transaction request.
This request information sent from the source chain is passed to the target chain application
contract. The cross-chain management contract receives and verifies the cross-chain
information. The cross-chain protocol requires the target chain application contract and
function name to be included in the cross-chain information. Then the management
contract invokes the specified method for the specified contract address and passes the
information to the target chain application contract.

8.2.2 Interchain Services based on Hyperledger Fabric
8.2.2.1 Application Contract Development Guide in BSN production environment

The development of Fabric application contract is based on its own business scenario. The
main implementation includes two parts: if the source chain initiates a cross-chain transaction,
its application contract needs to get outbound to access the target chain; if the target chain
receives a cross-chain transaction, its application contract needs to get inbound. Fabric's chain
ID and cross-chain management contract’s name are automatically assigned and generated
through the BSN operations and maintenance system when users open interchain services, and
can be viewed in the BSN portal.

An example of a specific cross-chain transaction call can be found in 7.2.2.3 Demo Contract
Example.

8.2.2.2 Application Contract Development Guide in BSN Testnet

Fabric's chain ID in the BSN China Testnet is 88 and in the BSN International Testnet is 89.
This chain ID is registered in Poly Enterprise, not the channel 1D corresponding to Fabric itself.
The name of Fabric cross-chain contract is ccm.

123

Blockchain-based Service Network User Manual

An example of a specific cross-chain transaction call can be found in 7.2.2.3 Demo Contract
Example.

8.2.2.3 Demo Contract Example
BSN production environment and BSN Testnet:

https://github.com/BSNDA/ICH/tree/main/sample/polychain/fabric-contract/online/hellopoly

8.2.3 Interchain Services based on FISCO BCOS
8.2.3.1 Application Contract Development Guide in BSN production environment

The development of FISCO BCOS application contract is based on its own business scenario.
The main implementation includes two parts: if the source chain initiates a cross-chain
transaction, its application contract needs to get outbound to access the target chain; if the target
chain receives a cross-chain transaction, its application contract needs to get inbound.

An example of a specific cross-chain transaction call can be found in 7.2.3.3 Demo Contract
Example.

8.2.3.2 Application Contract Development Guide in BSN Testnet

FISCO's chain ID in the BSN China Testnet is 98 and in the BSN International Testnet is 99.
This chain ID is registered in Poly Enterprise, not the group ID corresponding to FISCO itself.

The application contract example in BSN test network is the same as the production
environment, please visit 7.2.3.1 Application Contract Development Guide in BSN Production
Environment for details.

An example of a specific cross-chain transaction call can be found in 7.2.3.3 Demo Contract
Example.

8.2.3.3 Demo Contract Example

BSN Production Environment and Testnet:
https://github.com/BSNDA/ICH/tree/main/sample/polychain/fisco contracts/hellopoly

8.2.4 Interchain Services based on Ethereum Ropsten
Application Contract Development Guide

The development of the ETH application contract is based on its own business scenario. The
main implementation includes two parts: if the source chain initiates a cross-chain transaction,
its application contract needs to get outbound to access the target chain; if the target chain
receives a cross-chain transaction, its application contract needs to get inbound. ETH's chain
ID in the BSN Testnet is 2. This chain ID is registered in Poly Enterprise and the configuration
is applicable to both BSN Production Environment and Testnet.

Below is an example of a source chain initiating a cross-chain transaction call:

124

https://github.com/BSNDA/ICH/tree/main/sample/polychain/fabric-contract/online/hellopoly
https://github.com/BSNDA/ICH/tree/main/sample/polychain/fisco_contracts/hellopoly

Blockchain-based Service Network User Manual

function say(uint64 _toChainld, bytes somethingWoW) public returns (bool){

IEthCrossChainManagerProxy eccmp =
IEthCrossChainManagerProxy(managerProxyContract);

address eccmAddr = eccmp.getEthCrossChainManager();

IEthCrossChainManager eccm = IEthCrossChainManager(eccmAddr);

bytes memory toProxyHash = proxyHashMap[_toChainld];

require(eccm.crossChain(_toChainld, toProxyHash, "hear”, _somethingWoW),
"CrossChainManager crossChain executed error!");

emit Say(_toChainld, toProxyHash, _somethingWoW);

return true;

Below is an example of a target chain call when receiving a cross-chain transaction:

Blockchain-based Service Network User Manual

function hear(bytes _somethingWoW, bytes _fromContractAddr, uint64 _toChainld) public
returns (bool){

hearSomeThing = _somethingWoW,;

emit Hear(_somethingWoW, _fromContractAddr);

return true;

Demo Contract Example

GitHub: https://github.com/BSNDA/ICH/tree/main/sample/polychain/eth contracts/hellopoly
8.2.5 Interchain Services based on Neo Testnet

Application Contract Development Guide

The development of Neo application contract is based on its own business scenario. The main
implementation includes two parts: if the source chain initiates a cross-chain transaction, its
application contract needs to get outbound to access the target chain; if the target chain receives
a cross-chain transaction, its application contract needs to get inbound. Neo's chain ID in the
BSN Testnet is 4. This chain ID is registered in Poly Enterprise the configuration is applicable
to both BSN Production Environment and Testnet.

Below is an example of a source chain initiating a cross-chain transaction call:

public static bool Say(Biginteger toChainld, byte[] msg)
{

126

https://github.com/BSNDA/ICH/tree/main/sample/polychain/eth_contracts/hellopoly

Blockchain-based Service Network User Manual

var toProxyHash = HelloPoly.GetProxyHash(toChainld);

var ccmcScriptHash = HelloPoly.GetProxyHash(neoChainlD);

bool success = (bool)((DynCall)ccmcScriptHash. ToDelegate())(""CrossChain™, new
object[] { toChainld, toProxyHash, "hear", msg });

HelloPoly.Notify(success, "[HelloPoly]-Say: Failed to call CCMC.");

HelloPoly.SayEvent(toChainld, toProxyHash);

return true;

Below is an example of a target chain call when receiving a cross-chain transaction:

public static bool Hear(byte[] inputBytes, byte[] fromProxyContract, BigInteger
fromChainld, byte[] callingScriptHash)

Storage.Put(fromProxyContract, inputBytes);

Blockchain-based Service Network User Manual

HearEvent(fromChainld, fromProxyContract, inputBytes);

return true;

Demo Contract Example

GitHub: https://github.com/BSNDA/ICH/tree/main/sample/polychain/neo-contract

8.3 Interchain Services based on IRITA

8.3.1 Overview

BSN interchain services based on IRITA is a cross-chain network and is a part of the ICH. In
the interchain communication process, developers initiate an interchain service call by their
application contracts, and after receiving this call, the relayer of that application chain will
initiate a cross-chain request to the ICH. After receiving the request, the service provider
transfers the request to the target chain, acquires the transaction result and returns it to the ICH.
Finally, the relayer returns the transaction result to the application chain by calling the cross-
chain contract.

The application contract, cross-chain contract, relayer, ICH, service provider and services are
working together to complete the entire process of interchain services.

China Fabric CC_Cross

FISCO BCOS | Oxdaa3b22adeef09c9416f01db654035ba8c729522

International | Fabric CC_Cross

FISCO BCOS | 0xb85fc9a3al3ebd9c0855ed3e3832bhf0277e6f0cC

8.3.2 Interchain Architecture based on IRITA
1. Cross-chain Contract
a. Service Market

Service Market is a module responsible for managing interchain service information. It
contains the following functions:

* Add Service Binding: Add interchain service information to the application chain,
including: service name, service description, service provider, etc.

» Update Service Binding: Function to modify the service binding information.
* Get Service Bindings: Query the available interchain services.

b. Service Core

As the core of the entire cross-chain contract, Service Core is responsible for receiving a cross-
chain request from the application contract, the request result from the relayer, and return the

128

https://github.com/BSNDA/ICH/tree/main/sample/polychain/neo-contract

Blockchain-based Service Network User Manual

cross-chain call result, including the following functions:

* (Call Service: Function to make a cross-chain request. It is invoked by the application
contract by passing the interchain service name, input parameters, callback contract info,
etc. A successful invocation will return a unique request ID.

* Set Response: Return the cross-chain invocation result called by relayer and write the result
to the application chain. If an application contract method needs to be called back during
service invocation, it needs to be called in this function.

* Get Response: Query the cross-chain invocation result by request ID.
2. Application Contract

Application contract is developed by the developer for the interchain services. In an application
contract, the developer can invoke the call service function of the cross-chain contract to make
a cross chain call. A callback function in the application contract also needs to be provided to
get the call result, otherwise developers will have to call the Get Response function in an
application contract to query the service invocation results.

3. Relayer

Relayer is a service that listens for the cross-chain request submitted to ICH by a source chain.
It is responsible for listening the call service function event, and submitting to the ICH.

4. Service Provider

Service provider, connects the HUB to the destination chain. It is a service that listens for the
cross-chain request from the ICH, invokes the destination chain, and returns the transaction
results to the ICH.

5. Interchain Service

The interchain service is developed by the service provider. It could be the smart contract
deployed on one blockchain for an application on another blockchain to call across the chain.
Support from the service provider is required to turn a service into an interchain service.

6. Interchain Communications Hub

As the core component of BSN's interchain service, the ICH is responsible for receiving cross
chain requests submitted by the source chain Relayer, verifying the transaction and initiating
the cross-chain transaction with the Service Provider of the destination chain. After the
transaction is complete, it is also responsible for obtaining the transaction result from the
Service Provider, verifying and returning the result to the source chain Relayer.

8.3.3 Interchain Services in BSN Testnet

In the BSN Testnet, the MintBase contract deployed on ETH Ropsten and Store contract
deployed on FISCO BCOS are available for interchain services. To experience the interchain
services, developers can publish Fabric or FISCO BCOS application contracts, and call
application smart contracts between them.

Developers need to develop application contracts or use sample contracts provided by BSN to
make interchain service invocations.

8.3.3.1 Interchain Application Contract based on Fabric
Interchain Application Contracts Development Guide
1. Preparation:

129

Blockchain-based Service Network User Manual

Run the code below to obtain the BSN interchain consuming contract help package
(ICH.git). Currently, only the GO language version is supported but more versions will be
added later.

cd $GOPATH
mkdir -p src/github.com/BSNDA && cd src/github.com/BSNDA
git clone https://github.com/BSNDA/ICH.git
2. Initiate the interchain service request

After creating the Fabric chain code struct and invoke function, import below package:
import (
"github.com/BSNDA/ICH/sample/irita/consumers/fabric/crosschaincode™

)

3. Call the crosschaincode.CallService method in the invoke function using the parameters of
the method as follows:
e stub: shim.ChaincodeStublInterface
e serviceName: the interchain service name to invoke, nft for ETH, and bcos-store
for FISCO BCOS
input: the input object for interchain service
callbackCC: callback chaincode name
callbackFcn: callback chaincode function name
timeout: timeout

The input parameter varies according to the interchain service and type passed in. In the
ETH service, the input structure is as follows:

type Input struct {
ABIEncoded string “json:"abi_encoded,omitempty"”
To string “json:"to""
AmountToMint string “json:"amount_to_mint™
MetalD string “json:"meta_id™
SetPrice string “json:"set_price™
IsForSale bool “json:"is_for_sale™
}
In the FISCO BCOS service, the input structure is as follows:
type BcosInput struct {
Value string “json:"value"
¥
A unique request ID will be returned after successful invocation. Keep this value and use
it to determine the cross-chain results in the callback function.
4. Implement the callback interface:

After the cross chaincode receives the service response from Fabric Relayer, the callback
method name and callback chaincode name passed in will be called to return the service
response. The first parameter of the call returns a JSON-formatted string. Below is the
service response structure:

type ServiceResponse struct {

130

Blockchain-based Service Network User Manual

Requestld string “json:"requestID,omitempty"”
ErrMsg string “json:"errMsg,omitempty"”
Output string “json:"output,omitempty™
IcRequestld string “json:"icRequestID,omitempty"”
}

Method crosschaincode.GetCallBackInfo() could be called to Serialize the value. The
requestID is unique and can be used to conduct the business processing. Output a JSON-
formatted string which is the return value of the crosschain response. Below is the input
data structure:

type InputData struct {
Header interface{} “json:"header™
Body interface{} “json:"body"™
}

Parameter “Body” is the output object for the service. In ETH service, the input structure
is as follows:

type Output struct {
NftID string “json:"nft_id""
}
In FISCO BCOS service, the output structure is as follows:
type BcosOutput struct {
Key string “json:"key""
}
5. Package the chaincode

ICH.git, which is imported by the chaincode, needs to be packaged with the chaincode
together by govendor. If you haven’t installed govendor, you can install it as below:

Install govendor:
go get -u -v github.com/kardianos/govendor
Execute in the main method directory:

govendor init

govendor add -tree github.com/BSNDA/ICH/sample/irita/consumers/fabric/crosschaincode

After execution, the vendor folder will be generated. For the last step, compress the
project and vendor folder together, then upload and deploy it in BSN portal.

Application Contract Example
GitHub: https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fabric/chaincode
8.3.3.2 Interchain Application Contract based on FISCO BCOS

The interchain consuming contracts based on iService with Solidity are applicable for the EVM
compatible application blockchain platform like Ethereum and FISCO BCOS.

Application Contracts Development Guide

IService Client: For convenience, the contract named iService Client is built to encapsulate the
interaction with the iService Consumer Proxy and handle logistics including event triggering,

131

https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fabric/chaincode

Blockchain-based Service Network User Manual

request validation and status maintaining, which helps improve development efficiency.

The iService Client source code can be found in the Example Contract.

1. ImportiService Client

To use the iService Client, import the corresponding contract path. For example:

import ServiceClient.sol

Note: You can directly use the iService Client code as a part of the consuming contract.

2.

Inherit iService Client

contract <consuming-contract-name> is iServiceClient {

}

Initiate the interchain service request

Set the iService Consumer Proxy (i.e. iService Core Extension) contract address.

The contract address in BSN Testnet is
Oxcdad7e31edb24fc5f7c1aat9edb8b8640d2fe3ca

This can be performed by invoking the setlServiceConsumerProxy method inherited
from the iService Client. A constructor taking the iService Consumer Proxy address
can be used. E.g.

constructor(
address _iServiceConsumerProxy

)
public

{

setlServiceConsumerProxy(_iServiceConsumer);

}
Implement the callback interface

When the iService Consumer Proxy receives the service response, the method
implementing the callback interface will be called to paginate the response to the
corresponding consuming contract.

The below is the callback interface signature.

function callback(
bytes32 _requestID,

string calldata _output

)

Initiate iService invocation

The iService request can be sent by the sendIServiceRequest function in the iService
Client.

bytes32 memory requestID = sendIServiceRequest(

serviceName,

132

https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fiscobcos/iServiceClient

Blockchain-based Service Network User Manual

requestinput,
timeout,
address(this),

this.callback.selector
);

Note: Developers need to retrieve information related to the service from the iService
Market Ex deployed on the application chain for the interchain service invocation, such
as the service name and schemas of the input and output.

4. NFT Service Consuming Contract Example

The NFT service is provided by the NFT contract on the Ethereum Ropsten to create NFT
assets.

The definition of the NFT service is as follows:
* Service name: nft
* Service Input JSON Schema:
{
"type": "object",
"properties": {
"to": {
"description™: "address to which the NFT will be minted",
"type": "string"”
b
"amount_to_mint": {
"description”: "amount of the NFT to be minted",
"type": "string"
b
"meta_id": {
"description™: "meta id",
"type": "string"
h
"set_price": {
"description™: "price in Ethereum Wei",
"type": "string"
h
"is_for_sale": {
"description™: "whether or not the minted NFT is for sale",

"type": "boolean"

}

133

http://ropsten.etherscan.io/address/0x80f2a29e861a1888603b6bbd54453ee995c808ad

Blockchain-based Service Network User Manual

}
® Service Output JSON Schema:
{
"type": "object",
"properties": {
"nft_id™: {
"description™: "id of the minted NFT",
"type": "string"
}
}
}

Developers can develop contracts on application chains to implement to mint NFT
assets across chains.

Application Contract Example

GitHub:
https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fiscobcos/NFTServiceCon

sumer

8.3.4 Interchain Services based on Hyperledger Fabric

Application Contract Development Guide

1.

Preparation:

Run the code below to obtain the BSN interchain consuming contract help package
(ICH.git). Currently, only the GO language version is supported but more versions will be
added later.

cd $GOPATH
mkdir -p src/github.com/BSNDA && cd src/github.com/BSNDA
git clone https://github.com/BSNDA/ICH.git

Initiate the interchain service request
After creating the Fabric chain code struct and invoke function, import below package:

import (
"github.com/BSNDA/ICH/sample/irita/consumers/fabric/crosschaincode"

)

Call the crosschaincode.CallService method in the invoke function using the parameters of
the method as follows:

stub: shim.ChaincodeStublinterface

serviceName: the interchain service name of permissioned chain is “cross_service”

input: the input object for interchain service

callbackCC: callback chaincode name

callbackFcn: callback chaincode function name

timeout: timeout

The input parameter varies according to the interchain service and type passed in. In the
Fabric service, the input structure is as follows:

134

https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fiscobcos/NFTServiceConsumer
https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fiscobcos/NFTServiceConsumer

Blockchain-based Service Network User Manual

type Input struct {
Chainld uinté4 “json:"chainld™
ChainCode string “json:"chainCode™
FunType string “json:"funType™
Args []string “json:"args™
}
In the FISCO BCOS service, the input structure is as follows:
type BcosInput struct {
OptType string “json:"optType™
ChainlD uint64 “json:"chainld™
ContractAddress string “json:"contractAddress™

CallData string “json:"callData™

}
A unique request ID will be returned after successful invocation. Keep this value and use
it to determine the cross-chain results in the callback function.
3. Implement the callback interface:

After the cross-chain contract receives the service response from Fabric Relayer, the
callback method name and callback chaincode name passed in will be called to return the
service response. The first parameter of the call returns a JSON-formatted string. Below is
the service response structure:

type ServiceResponse struct {
Requestld string “json:"requestID,omitempty"
ErrMsg string “json:"errMsg,omitempty™
Output string “json:"output,omitempty"”
IcRequestld string “json:"icRequestID,omitempty"”
}

Method crosschaincode.GetCallBackInfo() could be called to serialize the value. The
requestID is unique and can be used to conduct the business processing. Output is a
JSON-formatted string which is the returned value of the cross-chain response. Below is
the input data structure:

type InputData struct {
Header interface{} “json:"header"
Body interface{} “json:"body"
}

Parameter “Body” is the output object for the service. In Fabric service, the input
structure is as follows:

type Output struct {

TxValidationCode int32 json:"txValidationCode™
ChaincodeStatus int32 “json:"chaincodeStatus'
TxId string “json:"txId"™

Payload string “json:"payload™

135

Blockchain-based Service Network User Manual

}
In FISCO BCOS service, the output structure is as follows:
type BcosOutput struct {
Result string “json:"result,omitempty"”
Status bool “json:"status,omitempty"”
TxHash string “json:"tx_hash,omitempty™
}
Pack the chaincode

ICH.git, which is imported by the chaincode, needs to be packaged with the chaincode
together by govendor. If you haven’t installed govendor, you can install it as below:

Install govendor:
go get -u -v github.com/kardianos/govendor
Execute in the main method directory:
govendor init
govendor add -tree github.com/BSNDA/ICH/sample/irita/consumers/fabric/crosschaincode

After the execution, the vendor folder will be generated. For the last step, compress the
project and vendor folder together, then upload and deploy it in the BSN portal.

Application Contract Example
GitHub: https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fabric

8.3.5 Interchain Services based on FISCO BCOS

Application Contract Development Guide

IService Client: For convenience, the contract named iService Client is built to encapsulate the
interaction with the iService Consumer Proxy and handle logistics including event triggering,
request validation and status maintaining, which helps improve development efficiency.

The iService Client source code can be found in the Example Contract.

1.

Import iService Client

To use the i1Service Client, import the corresponding contract path. For example:

import ServiceClient.sol

Note: You can directly use the iService Client code as a part of the consuming contract.

Inherit iService Client

contract <consuming-contract-name> is iServiceClient {

}

Initiate the interchain service request

e Set up the iService Consumer Proxy, that is, after the successful deployment of the
cross-chain contract in the portal, find the iServiceDelegator cross-chain proxy contract

136

https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fabric
https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fiscobcos/iServiceClient

Blockchain-based Service Network User Manual

address in the cross-chain information page.

9, profile

Blockchain-based jser Manuai ocumentation) Massage Centar
EE Service Network @ User Manual & Dc tat Message Cente

Home

Permissionless Services

hain
BB permissioned services
irita Crozs-chain Information

Published Services

Manager Contract Type

Dedicated Node Services

Interchain Services Cross-chain call information
User Center

Developer Community

This is done by calling setlServiceConsumerProxy(address
_iServiceConsumerProxy), a method inherited from iService Client, or by passing in
the contract constructor. E.g.

constructor(

address _iServiceConsumerProxy

)
public

{

setlServiceConsumerProxy(_iServiceConsumer);
}
e Implement the callback interface

When the iService Consumer Proxy receives the service response, the method
implementing the callback interface will be called to paginate the response to the
corresponding consuming contract.

Below is the callback interface:

function callback(
bytes32 _requestID,

string calldata _output
)

e [nitiate iService invocation

The iService request can be sent by the sendIServiceRequest function in the iService
Client.

bytes32 memory requestID = sendlServiceRequest(

serviceName,

137

Blockchain-based Service Network User Manual

requestinput,
timeout,
address(this),

this.callback.selector
);

Note: Developers need to retrieve information related to the service from the iService
Market Ex deployed on the application chain for the interchain service invocation, such
as the service name and schemas of the input and output.

4. Fabric cross-chain call example
* Service name: cross_service
¢ Service Input JSON Schema:

{

Chainld uint64 “json:"chainld"™

ChainCode string “json:"chainCode™
FunType string “json:"funType™

Args [Istring “json:"args™

}
® Service Output JSON Schema:

{
TxValidationCode int32 “json:"txValidationCode™

ChaincodeStatus int32 “json:"chaincodeStatus"”

TxId string “json:"txld"™
Payload string “json:"payload™
}

5. FISCO BCOS cross-chain call example
The definition of FISCO BCOS service is as follows:
e Service name: Cross_service

e Service Input JSON Schema:

{
OptType string “json:"optType™
ChainID uint64 “json:"chainld™
ContractAddress string “json:"contractAddress™
CallData string “json:"callData™

}

e Service Output JSON Schema:

{

138

Blockchain-based Service Network User Manual

Result string “json:"result,omitempty"”
Status bool “json:"status,omitempty"”
TxHash string “json:"tx_hash,omitempty™”
}
Application Contract Example

GitHub: https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fiscobcos

139

Blockchain-based Service Network User Manual

9 Account Management

In the My Account page, the user can view details of their card and transactions they performed
on the network. To work with My Account, follow these steps:

1. Inthe User Center menu, click the dropdown to reveal the list, in the menu list, click My
Account to display the page.

2. To update the user Card Information, click the Update card information to display the
My Credit Card page. The user will be redirected to the Stripe website. The BSN portal
can never see and does not store credit card information.

3. Update the card details as needed and click Update.

*Oinly the last 4 digits of the credit card number are retained on this website, and the rest of the information

i= not retained.

4. To search a bill in the My Bills section, enter or select the following:
e Bill Number - Enter the bill number if known
e Creation time - Select a start and end date
e Service Name - Enter a service name if known
e Status - Select from the options available in the dropdown
e Type of Bills - Select from the options available in the dropdown
e Click Query to display the bill information.

My Bills

Bill Number Service Name Type of Bill All

Creation Time - Status Al m

5. Inthe Bill list, under the Status and Action columns, the user can perform certain actions
including Pay and Details on each bill. To pay a bill, click Pay and to View a bill, click
Details.

Bill Number Service Name Type of Bill Bill Amount [USD) Actual Payment [USD] Creation Time Status Action

05C139F53008423CA41632668DA1... Basic plan Public chain plan upgr.. 20.00 20.00 (UTC+8:00) 08/07/2020 03:56:23 Payment success

140

Blockchain-based Service Network User Manual

10 Online Documentation
White Papers
Name Version | Update Details
BSN Introduction White paper V1.05 February 51,2020 | PDF
BSN Technical White Paper V1.0.0 | April 25",2020 PDF
Site Documents
Name Version | Update Details
User Manual 1.5.0 April 3012021 Online PDF
Fabric Examples 1.0.1 April 24" 2020 Github
FISCO BCOS Examples 1.0.1 April 241 2020 Github
SDK Examples 1.0.1 April 241 2020 Github

Permissioned Frameworks

Name

Official Website

Details

Hyperledger Fabric

https://www.hyperledger.org/

Github

Documentation

FISCO BCOS

http://fisco-bcos.org/

Github

Documentation

ConsenSys Quorum

https://consensys.net/quorum/

Github

Documentation

Public Chains

Name Official Website Details

Nervos https://www.nervos.org/ Github Documentation
NEO https://neo.org/ Github Documentation
ETH https://ethereum.org/ Github Documentation
Tezos https://tezos.com/ Github Documentation
EOS https://eos.io/ Github Documentation
IRISNET https://www.irisnet.org/ Github Documentation
dfuse-eos https://www.dfuse.io/en/home/?utm_source=BSN Github Documentation
Algorand https://algorand.foundation/ Github Documentation

141

https://global.bsnbase.com/static/tmpFile/BSNIntroductionWhitepaper.pdf
https://global.bsnbase.com/static/tmpFile/BSNTechnicalWhitePaper.pdf
https://bsnbase.io/static/tmpFile/bzsc/index.html
https://bsnbase.io/static/tmpFile/BSNUserManual.pdf
https://github.com/BSNDA/FabricBaseChaincode
https://github.com/BSNDA/FISCOBaseContract
https://github.com/BSNDA
https://www.hyperledger.org/
https://github.com/hyperledger/fabric/tree/v1.4.3
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
http://fisco-bcos.org/
https://github.com/FISCO-BCOS/FISCO-BCOS
https://fisco-bcos-documentation.readthedocs.io/en/latest/
https://consensys.net/quorum/
https://github.com/ConsenSys/quorum
https://docs.goquorum.consensys.net/en/stable/
https://www.nervos.org/
https://github.com/nervosnetwork
https://docs.nervos.org/
https://neo.org/
https://github.com/neo-project/neo
https://neo.org/dev
https://ethereum.org/
https://github.com/Ethereum
https://ethereum.org/en/developers
https://tezos.com/
https://tezos.gitlab.io/
https://developers.tezos.com/
https://eos.io/
https://github.com/EOSIO
https://developers.eos.io/
https://www.irisnet.org/
https://github.com/IRISNET
https://www.irisnet.org/docs
https://www.dfuse.io/en/home/?utm_source=BSN
https://github.com/dfuse-io/dfuse-eosio/?utm_source=BSN
https://docs.dfuse.io/?utm_source=BSN
https://algorand.foundation/
https://github.com/algorand
https://developer.algorand.org/docs/

Blockchain-based Service Network User Manual

Solana https://solana.com/ Github Documentation
ShareRing https://sharering.network/ Github Documentation
BTY https://www.bityuan.com/index Github Documentation
Oasis Network | http://www.oasisprotocol.org Github Documentation
Polkadot https://polkadot.network/ Github Documentation
Casper https://casperlabs.io/ Github Documentation
Findora https://findora.org/ Github Documentation
Near https://near.org/ Github Documentation

142

https://solana.com/
https://github.com/solana-labs/solana
https://docs.solana.com/introduction
https://sharering.network/
https://github.com/ShareRing/Shareledger
https://sharering.network/resources/ShareRing+API+Overview.pdf
https://www.bityuan.com/index
https://github.com/bityuan/bityuan
https://chain.33.cn/document/142
http://www.oasisprotocol.org/
https://github.com/oasisprotocol
https://docs.oasis.dev/general/
https://polkadot.network/
https://github.com/paritytech/polkadot
https://substrate.dev/
https://casperlabs.io/
https://github.com/CasperLabs
https://docs.rs/casper-node/latest/casper_node/rpcs/index.html
https://findora.org/
https://github.com/findoraorg
https://api.findora.org/
https://near.org/
https://github.com/near
https://docs.near.org/

Blockchain-based Service Network User Manual

11 Contact Us

If you have any questions or find any errors in this manual, please contact us:
Customer service hotline: +86-400-071-8215 (workday: 08:00 - 17:30)

Email: support@bsnbase.com

Telegram BSN Support Group: https://t.me/bsnsupport

International Social Media:

Official BSN SNS

f « o M

@bsnbase @bsnbase @globalbsn r/BSNBase @bsnbase

;é bsnbase.io = info@bsnbase.com ‘ t.me/bsnsupport

143

mailto:support@bsnbase.com
https://t.me/bsnsupport

	1 BSN Introduction
	1.1 Brief Introduction
	1.2 BSN Services
	1.2.1 Permissioned Services
	1.2.2 Permissionless Services
	1.2.3 Interchain Services

	1.3 Terminologies

	2 Release Notes
	3 Quick Start
	3.1 Permissioned Blockchain
	3.2 Permissionless Blockchain
	3.3 Documentation

	4 Registration and Activation
	4.1 Registration
	4.2 Login
	4.3 Forgot Password

	5 Permissioned Services
	5.1 Overview
	5.2 BSN Keys and Certificates Mechanism
	5.2.1 BSN Keys and Certificates Mechanism
	5.2.2 Locally generate the DApp access key pair

	5.3 DApp Services Publication and Participation
	5.3.1 Overview
	5.3.2 DApp Services Publication
	5.3.2.1 Create a New DApp Service
	5.3.2.2 Upload chaincode package
	5.3.2.3 Define Service Functions and Roles
	5.3.2.4 Select the Public City Nodes to deploy the service
	5.3.2.5 Select Certificate Mode
	5.3.2.6 Pay bills and submit for approval

	5.3.3 DApp Services Management
	5.3.3.1 Invite participants
	5.3.3.2 Basic Information Editing
	5.3.3.3 Service Upgrade
	5.3.3.4 Configuration Upgrade
	5.3.3.5 Detail

	5.3.4 DApp Services Participation
	5.3.4.1 Apply for a Service
	5.3.4.2 Select Roles and City Nodes
	5.3.4.3 Apply Certificate Mode
	5.3.4.4 Submit for approval
	5.3.4.5 Approve a service
	5.3.4.6 Download and renew a certificate
	5.3.4.7 Configuration parameters for service access

	5.4 Off-BSN system Access Guide
	5.4.1 Overview
	5.4.2 BSN Smart Contract Package Requirements
	5.4.2.1 Hyperledger Fabric smart contract package requirements
	5.4.2.2 Hyperledger Fabric prebuilt smart contract package
	5.4.2.3 FISCO BCOS smart contract package requirements
	5.4.2.4 FISCO BCOS prebuilt smart contract package

	5.4.3 PCN Gateway Fabric API
	5.4.3.1 DApp Access Signature Algorithm
	5.4.3.2 Key and Certificate Modes
	5.4.3.3 Retrieving DApp information API
	5.4.3.4 User Registration API
	5.4.3.5 Key Trust Mode invoking chaincode API
	5.4.3.6 Public Key Upload Mode user certification registration
	5.4.3.7 Public Key Upload Mode invoking chaincode API
	5.4.3.8 Retrieving transaction information API
	5.4.3.9 Retrieving block information API
	5.4.3.10 Retrieving the newest ledger information API
	5.4.3.11 Registering chaincode event API
	5.4.3.12 Registering block event API
	5.4.3.13 Chaincode and block event query API
	5.4.3.14 Remove chaincode and block event API
	5.4.3.15 Chaincode and block event notification message API
	5.4.3.16 Transaction status description

	5.4.4 PCN gateway FISCO API
	5.4.4.1 DApp Access Signature Algorithm
	5.4.4.2 Key and Certificate Modes
	5.4.4.3 Retrieving DApp information API
	5.4.4.4 User Registration API
	5.4.4.5 Key Trust Mode Invoking Smart Contract API
	5.4.4.6 Public Key Upload Mode Invoking Smart Contract API
	5.4.4.7 Retrieving Transaction Receipt API
	5.4.4.8 Retrieving Transaction information API
	5.4.4.9 Retrieving Block Information API
	5.4.4.10 Retrieving DApp Block Height API
	5.4.4.11 Retrieving Total Count of DApp Transactions API
	5.4.4.12 Retrieving Total Count of Block Transactions API
	5.4.4.13 Registering Smart Contract Event API
	5.4.4.14 Smart Contract Event Query API
	5.4.4.15 Remove Smart Contract Event API
	5.4.4.16 Smart Contract Event Notification Message API
	5.4.4.17 Transaction Receipt Status

	5.5 Development SDK and Examples
	5.5.1 BSN Gateway SDK Example
	5.5.2 Off-BSN System Examples

	5.6 BSN Testnet Services
	5.6.1 Overview
	5.6.2 Permissioned DApp Service Publication
	5.6.3 Interchain Services on BSN Testnet

	6 Dedicated Node Services
	6.1 Overview
	6.2 Create Projects
	6.3 Edit Projects
	6.4 Delete Projects
	6.5 View Project Details
	6.6 Unsubscribe Projects
	6.7 Edit Authorized Account

	7 Permissionless Services
	7.1 Overview
	7.2 Select Plans
	7.3 Create and Manage Projects
	7.4 Off-BSN system Access Guide
	7.4.1 Overview
	7.4.2 Ethereum
	7.4.3 EOS
	7.4.4 Nervos
	7.4.5 NEO
	7.4.6 Tezos
	7.4.7 IRISnet
	7.4.8 dfuse-eos
	7.4.9 Solana
	7.4.10 ShareRing
	7.4.11 Algorand
	7.4.12 BTY
	7.4.13 Oasis Network
	7.4.14 Polkadot
	7.4.15 Casper
	7.4.16 Findora
	7.4.17 Near

	8 Interchain Services
	8.1 Interchain Service Management
	8.1.1 Open Interchain Services
	8.1.2 View Interchain Services
	8.1.3 Deactivation and Activation of Interchain Services

	8.2 Interchain Services based on Poly Enterprise
	8.2.1 Overview
	8.2.2 Interchain Services based on Hyperledger Fabric
	8.2.2.1 Application Contract Development Guide in BSN production environment
	8.2.2.2 Application Contract Development Guide in BSN Testnet
	8.2.2.3 Demo Contract Example

	8.2.3 Interchain Services based on FISCO BCOS
	8.2.3.1 Application Contract Development Guide in BSN production environment
	8.2.3.2 Application Contract Development Guide in BSN Testnet
	8.2.3.3 Demo Contract Example

	8.2.4 Interchain Services based on Ethereum Ropsten
	8.2.5 Interchain Services based on Neo Testnet

	8.3 Interchain Services based on IRITA
	8.3.1 Overview
	8.3.2 Interchain Architecture based on IRITA
	8.3.3 Interchain Services in BSN Testnet
	8.3.3.1 Interchain Application Contract based on Fabric
	8.3.3.2 Interchain Application Contract based on FISCO BCOS

	8.3.4 Interchain Services based on Hyperledger Fabric
	8.3.5 Interchain Services based on FISCO BCOS

	9 Account Management
	10 Online Documentation
	11 Contact Us

