

Blockchain-based Service Network User Manual

Version 1.5.0

BSN Foundation

Blockchain-based Service Network User Manual

2

CONTENTS

1 BSN Introduction ... 1

1.1 Brief Introduction ... 1

1.2 BSN Services .. 2

1.2.1 Permissioned Services... 2

1.2.2 Permissionless Services .. 2

1.2.3 Interchain Services .. 3

1.3 Terminologies ... 3

2 Release Notes .. 5

3 Quick Start .. 8

3.1 Permissioned Blockchain .. 8

3.2 Permissionless Blockchain ... 9

3.3 Documentation .. 10

4 Registration and Activation .. 11

4.1 Registration ... 11

4.2 Login ... 13

4.3 Forgot Password ... 14

5 Permissioned Services .. 16

5.1 Overview ... 16

5.2 BSN Keys and Certificates Mechanism .. 17

5.2.1 BSN Keys and Certificates Mechanism .. 17

5.2.2 Locally generate the DApp access key pair .. 18

5.3 DApp Services Publication and Participation ... 19

5.3.1 Overview ... 19

5.3.2 DApp Services Publication ... 19

5.3.3 DApp Services Management .. 26

5.3.4 DApp Services Participation ... 29

5.4 Off-BSN system Access Guide ... 35

5.4.1 Overview ... 35

5.4.2 BSN Smart Contract Package Requirements .. 39

5.4.3 PCN Gateway Fabric API ... 44

5.4.4 PCN gateway FISCO API ... 67

5.5 Development SDK and Examples .. 91

Blockchain-based Service Network User Manual

3

5.5.1 BSN Gateway SDK Example ... 91

5.5.2 Off-BSN System Examples .. 92

5.6 BSN Testnet Services ... 92

5.6.1 Overview ... 92

5.6.2 Permissioned DApp Service Publication .. 92

5.6.3 Interchain Services on BSN Testnet ... 94

6 Dedicated Node Services .. 95

6.1 Overview ... 95

6.2 Create Projects .. 95

6.3 Edit Projects .. 97

6.4 Delete Projects .. 98

6.5 View Project Details ... 98

6.6 Unsubscribe Projects ... 99

6.7 Edit Authorized Account .. 100

7 Permissionless Services .. 101

7.1 Overview ... 101

7.2 Select Plans ... 101

7.3 Create and Manage Projects.. 104

7.4 Off-BSN system Access Guide ... 106

7.4.1 Overview ... 106

7.4.2 Ethereum ... 107

7.4.3 EOS .. 108

7.4.4 Nervos ... 108

7.4.5 NEO .. 109

7.4.6 Tezos ... 109

7.4.7 IRISnet .. 109

7.4.8 dfuse-eos ... 110

7.4.9 Solana .. 111

7.4.10 ShareRing .. 111

7.4.11 Algorand ... 112

7.4.12 BTY .. 112

7.4.13 Oasis Network ... 113

7.4.14 Polkadot .. 113

7.4.15 Casper ... 114

Blockchain-based Service Network User Manual

4

7.4.16 Findora .. 115

7.4.17 Near .. 115

8 Interchain Services .. 117

8.1 Interchain Service Management ... 118

8.1.1 Open Interchain Services .. 118

8.1.2 View Interchain Services .. 119

8.1.3 Deactivation and Activation of Interchain Services .. 121

8.2 Interchain Services based on Poly Enterprise ... 122

8.2.1 Overview ... 122

8.2.2 Interchain Services based on Hyperledger Fabric ... 123

8.2.3 Interchain Services based on FISCO BCOS ... 124

8.2.4 Interchain Services based on Ethereum Ropsten .. 124

8.2.5 Interchain Services based on Neo Testnet .. 126

8.3 Interchain Services based on IRITA ... 128

8.3.1 Overview ... 128

8.3.2 Interchain Architecture based on IRITA ... 128

8.3.3 Interchain Services in BSN Testnet .. 129

8.3.4 Interchain Services based on Hyperledger Fabric ... 134

8.3.5 Interchain Services based on FISCO BCOS ... 136

9 Account Management ... 140

10 Online Documentation .. 141

11 Contact Us ... 143

Blockchain-based Service Network User Manual

1

Preface

Blockchain-based Service Network (BSN or Service network) is a worldwide

infrastructure network that provides a one-stop-shop solution for blockchain and

distributed ledger technology (DLT) applications (DApp). BSN is a complex system

that involves programming, software development, resource and environment

configurations, application deployment, gateway APIs, local SDK, key certificates, etc.

To facilitate utilization, BSN International (www.bsnbase.io) has prepared this

document for developers and users to learn how to use BSN. We hope that BSN will

become the first choice for developers to develop and run their DApps.

BSN provides developers three types of services: Permissioned, Permissionless, and

Interchain services.

Permissioned services are divided into two parts. The first part demonstrates how

developers can deploy smart contracts to the selected public city nodes through the BSN

portal; the second part describes how developers can connect their off-BSN systems to

the corresponding smart contracts through the public city node gateway and conduct

data transaction processing.

Permissionless services determine how developers can choose the appropriate public

city nodes, plans, and public chain frameworks, to deploy and publish their DApps.

BSN's "Interchain Communications Hub" (ICH) integrates two interchain solutions

based on relay chain mechanism: Poly Enterprise developed by Onchain and IRITA

developed by Bianjie AI. It enables cross-chain interoperability between standard

permissioned chains, open permissioned chains and public chains. We will continue to

integrate more cross-chain protocols to achieve interoperability of all blockchains

adapted to the BSN.

Please feel free to contact us if there are any further questions. Our contact information

can be found in Chapter 10. Contact Us. We strongly recommend users access the

Online Documentation section to explore BSN technical details further.

Blockchain-based Service Network User Manual

1

1 BSN Introduction

1.1 Brief Introduction

The BSN design and concept as taken from the Internet, is a connected set of devices

across data centers using the TCP/IP protocol. BSN is formed by the connection of the

public city nodes using a set of blockchain operating environment protocols. Just like

the Internet, BSN is also a cross-cloud, cross-portal, cross-framework, global

infrastructure network.

With BSN, there are three types of participants: cloud service providers, blockchain

framework providers, and portal operators.

Cloud service providers, through the installation of free BSN public city node software,

can make their cloud service resources (computing power, storage, and bandwidth)

accessible and sell through BSN to end-users.

Blockchain framework providers align with the BSN’s framework adaptation standards

and deploy them on BSN so developers can use it to develop and deploy applications.

The Permissionless service only applies to the BSN international portal and

international public city nodes.

Portal operators can easily and quickly build a Blockchain as a Service (BaaS) platform

on their existing websites using BSN APIs. This allows them to provide BSN

capabilities to their end users without users leaving their websites.

BSN is an open network that any cloud service provider, framework provider, or portal

operator, that complies with BSN requirements and standards is free to use and stop

using the service network at any time.

Similar to the Internet, most users of BSN are developers and technology companies.

They can use any BSN portal to purchase cloud resources that charge based on

transactions per second (TPS), storage quantity, and bandwidth from any public city

node around the world. They select any pre-adapted framework to conveniently

develop, deploy, and manage permissioned blockchain applications at a very low cost.

Blockchain developers only need to deploy the application to one or more public city

nodes on BSN so participants can connect to the application at no cost through any

public city node gateway. All deployed applications share server resources in every

public city node. For high-frequency applications, public city nodes can intelligently

allocate a dedicated peer node with high processing capacity. For low-frequency

applications, they share the same peer node. This resource-sharing mechanism allows

BSN to reduce the resource cost to one-twentieth of the cost of traditional blockchain

cloud services.

BSN is a blockchain infrastructure network. Just as households do not need to dig their

own wells, but instead, enjoy the water supply services provided by public water plants

in cities, BSN blockchain application publishers and participants do not need to buy

physical servers or cloud resources to build their blockchain operating environment.

Blockchain-based Service Network User Manual

2

They use the public services provided by BSN and rent shared resources as needed, thus

greatly reducing their costs. According to recent research, it takes about 20,000 USD

per year for developers to build and deploy a traditional permissioned blockchain LAN-

type environment. However, with BSN, the minimum cost to run such an application is

as low as one dollar a day. Cost is a huge factor and will encourage a large number of

small, medium, and micro enterprises and even individuals (including students) to

innovate and start businesses through BSN. This will undoubtedly promote rapid

development and popularization of blockchain technology. In general, the development

from the closed architecture of the traditional blockchain to the resource-sharing

architecture of BSN completely mimics the development process of the Internet, which

gathered numerous isolated LANs in the early days to the global connectivity facilities

we have today. We hope to make BSN the blockchain Internet.

1.2 BSN Services

As mentioned above, BSN provides a one-stop-shop solution for developers to deploy,

operate, and manage DApps. BSN provides three types of services: Permissioned,

Permissionless, and Interchain services.

1.2.1 Permissioned Services

BSN is continually adapting most of the mainstream permissioned blockchain

frameworks. On the BSN portal users can deploy DApps on any public city nodes based

on the type of selected framework and the number of peer nodes. The number of peer

nodes per application can be up to 60 and can be distributed among public city nodes

based on different cloud services. Users can easily complete the DApp deployment

process by uploading smart contracts and configuring the corresponding parameters.

This service mode allows developers to focus on business innovation, smart contract

programming. All work related to environment construction, system maintenance,

application deployment, node transmission, and network configuration is done by BSN.

The pricing strategy for the Permissioned service is based on three resource elements

of each peer node of the published application. The three elements are TPS, storage,

and data traffic. Among them, TPS and storage in the BSN portal are pre-paid, while

data traffic will be charged based on actual usage. This pricing strategy is designed to

minimize resource costs and provide users with the best services. Based on the data

provided by the BSN portal, if a user deploys a three-peer Fabric DApp, and each peer

node supports 10TPS and 10GB storage capacity, the monthly fee is only 20 USD.

1.2.2 Permissionless Services

The Permissionless service is only applicable to the BSN international portal

(www.bsnbase.io) and international public city nodes. Compared with the complexity

of the Permissioned service, Permissionless service has the virtue of simplicity. The

Permissionless service mainly provides developers who develop public chain DApps,

with unified access service covering numerous public chain nodes. Developers may

choose different plans on the BSN portal, and can simultaneously deploy DApps and

process transactions on all BSN adapted public chain nodes through the selected public

city nodes.

Blockchain-based Service Network User Manual

3

We offer a free plan and different premium plans. The free plan includes up to 2,000

requests per day. There are 3 types of premium plans, priced at $20, $100, and $500 per

month. The premium plans include up to 40,000 requests, 250,000 requests, and

1,500,000 requests, respectively, per day. All requests can be assigned to any public

chain freely.

Permissionless services only provide shared nodes and access environments and do not

involve any business of the public chain itself. The gas fees incurred in publishing and

running DApps on any public chain shall be borne by the developers themselves and

have nothing to do with BSN.

1.2.3 Interchain Services

The vision of BSN is to become the Internet of blockchains. In the future, millions of

DApps will be deployed and run on BSN. Both Permissioned and Permissionless

DApps will be very easy to call and they can interact with each other just like

applications currently do on the Internet. From this perspective, Interchain will become

a very core part of the BSN technical architecture.

The BSN’s “Interchain Communications Hub” (ICH) is now commercially available

and integrates with Onchain's Poly Enterprise and Bianjie’s IRITA cross-chain

solutions. It supports cross-chaining between permissioned chains and cross-chaining

between permissioned chains and ETH Ropsten testnet and NEO testnet.

A demo version of ICH is also live on the BSN Testnet, integrating two interchain

solutions based on the relay chain mechanism: (1) Poly Enterprise developed by

Onchain and (2) IRITA developed by Bianjie. We welcome all developers to try out

and provide feedback and suggestions to us and we will continue to improve the

interchain functionality.

BSN's "Interchain Communications Hub" (ICH) integrates two interchain solutions

based on relay chain mechanism: Poly Enterprise developed by Onchain and IRITA

developed by Bianjie. It enables cross-chain interoperability between standard

permissioned chains, open permissioned chains and public chains. We will continue to

integrate more cross-chain protocols to achieve interoperability of all blockchains

adapted to the BSN.

1.3 Terminologies

⚫ Public city node (PCN): This is the core element of BSN but the “node” part

doesn’t refer to the blockchain nodes and BSN isn’t a blockchain. With BSN, each

PCN is a virtual data center used to allocate a portion of resources from the cloud

service or data center on which it was deployed. An entire blockchain operating

environment has been built within this resource pool and includes multiple

blockchain frameworks, shared peer nodes, CA management, authority chain, PCN

gateway, and PCN manager systems.

⚫ DApp: This is a generic term for blockchain and distributed ledger technology

application.

⚫ DApp Service or Service: This is a DApp that is already deployed and in use on

Blockchain-based Service Network User Manual

4

BSN that users can access with an invitation from the DApp publisher. The

invitation allows them to directly join and use the service.

⚫ Service Publisher: This is the individual or enterprise who published and deployed

the DApp service on BSN and is responsible for granting access to users who apply

to participate in the service.

⚫ Service Participant: This is a user that uses the BSN DApp service via a BSN

portal or the publisher’s system. Also, the user’s off-BSN system can connect to the

DApp service via the PCN gateway to execute transactions and query data.

⚫ Off-BSN system: A business IT system developed and managed by a DApp service

publisher or a service participant outside BSN.

Blockchain-based Service Network User Manual

5

2 Release Notes

Release date Version Notes

2021/04/30 1.5.0

• Iterative optimization and technical optimization of the BSN

international website (www.bsnbase.io) to enhance user

experience.

• Launched BSN dedicated node services based on ConsenSys

Quorum framework.

• Launched the commercial service of Interchain

Communications Hub based on IRITA.

• Fixed some bugs and enhanced the stability of the system.

2021/03/19 1.4.1
• Added public chain main net and test net nodes along with

native API access services. Including: Casper, Findora and

Near.

2021/01/31 1.4.0

• Iterative optimization and technical optimization of the BSN

international website (www.bsnbase.io) to enhance user

experience.

• Launched the commercial service of Interchain

Communications Hub based on Poly Enterprise.

• Fixed some bugs and enhanced the stability of the system.

2020/11/30 1.3.1
• Added public chain main net and test net nodes along with

native API access services. Including: BTY, Oasis and

Polkadot.

2020/10/31 1.3.0

• Optimized the BSN International website (www.bsnbase.io)

to improve user experience.

• Launched BSN Permissioned Blockchain Testnet, providing

developers with a free testing environment supporting:

Hyperledger Fabric R1, FISCO BCOS K1 DApp Services

publication

-Interchain testing services

• Launched the BSN Interchain Communications Hub on BSN

Testnet based on Poly Enterprise and IRITA.

• Added the BSN empowerment platform APIs to allow third-

party portals to access BSN Permissionless Services.

• Added the TPD (Transactions Per Day) limit control function

in the Permissionless Services

• Fixed some bugs and enhances the stability of the system.

2020/9/24 1.2.1

• Updated the BSN Global website address to

https://www.bsnbase.io.

• Added public chain main net and test net nodes along with

native API access services. Including: Algorand, ShareRing

and Solana.

• Added Enable Key function in the public chain project.

2020/8/10 1.2.0

• Redesigned the user interface toprovide better navigation and

user experience.

• Added public chain main net and test net nodes along with

Blockchain-based Service Network User Manual

6

native API access services. Including: Nervos, Neo, ETH,

Tezos, EOS, IRISnet, etc.

• Added commercial functionality for Hyperledger Fabric and

FISCO BCOS frameworks.

• Updated FISCO BCOS framework to support SECP256 K1

encryption algorithm.

• Added the following functionality to Permissioned services:

recurring payment mechanism for service charge and data

usage charge, service configuration upgrade.

• Added Permissionless service plan purchase and upgrade.

• Added "My Account" in User Center to make it easier for users

to update credit card information, check bills, pay bills and

download invoices (we process all credit card activities

directly on Stripe).

• Added Online Help Manual to provide developers and portal

users easy-to-follow instructions.

• Added PCN gateway SDK and all examples on Github:

https://github.com/bsnda.

• Fixed a few bugs to enhance the stability of the system.

2020/4/25 1.1.0

• The BSN global portal has officially launched. Beta testing

will be held from April 25th, 2020 to June 25th, 2020.

• Developers can deploy one three-peer DApp (service) at up to

three public city nodes (PCNs) free of charge during beta

testing.

• There is a total of 10 available PCNs during beta testing. They

are deployed on AWS, Microsoft Azure, Google Cloud, China

Mobile Cloud, and Huawei Cloud.

• During beta testing, there are two frameworks to choose from,

Hyperledger Fabric V1.4.3 or FISCO BCOS V2.4.0.

• Developers can choose “Key Trust Mode” or “Public-Key

Upload Mode” to manage their service users’ certificates and

keys.

• Basic information and chaincode/smart contracts in deployed

services can be modified anytime. PCNs, however, cannot be

changed once chosen.

• Published services are private by default. Developers will need

to apply for a public listing. After approval, they will be

available on the App Store.

• Developers will need to grant permissions to other users to

participate in their services. The participants then follow the

services’ instructions to generate service access keys and user

transaction keys by using either “Key Trust Mode” or “Public-

Key Upload Mode”.

• The PCN gateway provides a set of user registration APIs for

deployed services. Developers can register service users via

these APIs from their off-BSN systems. Developers do not

need to log in to the BSN global portal.

https://github.com/bsnda

Blockchain-based Service Network User Manual

7

• The PCN gateway APIs support “Key Trust Mode” for both

Fabric and FISCO BCOS. “Public Key Upload Mode” is only

supported for Fabric.

• For more info on gateway APIs, please refer to the developer’s

manual.

Blockchain-based Service Network User Manual

8

3 Quick Start

3.1 Permissioned Blockchain

Blockchain-based Service Network User Manual

9

Permissioned DApp Service publishers can create DApp services in the BSN portal. To

create the service, it is necessary to upload the smart contract/chaincode package, define

the service functions and roles, select the public city nodes and select the participant

certificate mode (including Key Trust mode and Uploaded Public Key mode). After

that, publishers pay the bills and submit the service deployment request to the network

operator for approval and publishing.

After the successful publication of the service, publishers can participate in their service

or invite other users to participate in the service. To participate in the service,

participants should select designated roles and the access public city node, then generate

the certificates according to the certificate mode set by publishers. Participation will be

successful after being approved by service publishers.

Once successfully participating in the service, participants can download the certificate,

and use the certificate and service access configuration parameters to access the

chaincodes/smart contracts through the gateway API.

3.2 Permissionless Blockchain

Blockchain-based Service Network User Manual

10

Permissionless services allow visitors to select public city nodes and plans to participate

in a service. There are 2 types of plans, the free plan, and premium plans. Visitors can

choose plans according to their business requirements. To connect to the public chain

nodes, users can create projects to obtain project IDs, project keys, and access addresses

to access the public chain services.

3.3 Documentation

The direct users of the BSN portal are developers. As the environment and tools of the

blockchain application's development, deployment, and operation, BSN is relatively

complex in its overall operation. We strongly recommend that all developers start by

examining the documentation and examples so that they will be able to master the use

of BSN within a day or two.

For your convenience, all examples we've provided are available on Github. We hope

that developers with serious interest can help us optimize and enrich the examples so

that other developers are able to adapt and learn about blockchain development.

Developers who share their samples, will receive small gifts and be invited to BSN's

internal technical seminar.

For links to all documents and examples, please visit Chapter 9. Online Documentation.

Blockchain-based Service Network User Manual

11

4 Registration and Activation

BSN requires its users to register and confirm their registration before they can access

the network to carry out services and actions across the network. As a first-time user,

follow these steps to register:

4.1 Registration

1. Click here to access the website at www.bsnbase.io.

2. With the blockchain-based service network, you can access the system either as an

Individual or a Corporate entity.

3. To register as an Individual, enter or select the following:

• Username – Enter a preferred username

• Nationality – Click the dropdown to select your country from the list of

countries

• Name – Enter your real name, different from the username

• Mobile Number (Optional) – Enter your mobile number

• Email address – Enter an email address you have access to

• Brief description of your programming experience (Optional) – If you have

some experience in programming, we would love to hear about it

• Check the I have read and agree to Terms of User and Privacy Policy box

• Click Confirm to finish the registration.

https://www.bsnbase.io/

Blockchain-based Service Network User Manual

12

4. To register as a Corporate entity, enter or select the following:

• Username – Enter a preferred username

• Nationality – Click the dropdown to select your country from the list of

countries

• Enterprise Name – Enter the legal name of your corporate body or company

name

• Detailed Address – Enter a verifiable address of the company location

• Contact Name – Enter a contact name that represents the company

• Mobile Number (Optional) – Enter your corporate mobile number

• Email address – Enter a corporate email address that you have access to

• Brief description of your programming experience (Optional) –If you have

some experience in programming, we would love to hear about it

• Check the I have read and agree to Terms of User and Privacy Policy box

• Click Confirm to finish the registration.

Blockchain-based Service Network User Manual

13

5. A confirmation dialog box will be displayed confirming your registration. Click

Go to Dashboard.

6. You will receive an email from BSN requesting that you confirm your registration.

7. Click on the link in the email to confirm your registration and enter your Password

and Password Confirmation.

8. Click Confirm when done to return you to the login page.

4.2 Login

After you have successfully registered your account on BSN, you can login by

following these steps:

1. Click on the Login link to access the login page.

2. On the login page, enter the Username/Email, Password, and the Verification

Code.

3. Click Sign Into access the Home page.

https://global.bsnbase.com/main/index?type=login

Blockchain-based Service Network User Manual

14

4.3 Forgot Password

If at any time you have forgotten your password, you can follow these steps to retrieve

it:

1. On the Login page, click the Forgot Password to open the forgot password page.

2. On the page, enter the correct account or email.

3. In the verification code, enter the displayed code. If you wish to generate another

code, click on the code to generate another.

Blockchain-based Service Network User Manual

15

4. Click Next to view the Authentication page.

5. On the Authentication page, click the Send button to get verification code. This

will generate a code that will be sent to your registered email address.

6. Enter the code that was received in your mailbox and click Next.

7. On the reset login password page, enter your New password and Confirm

password.

8. Click Confirm to change your password.

Blockchain-based Service Network User Manual

16

5 Permissioned Services

5.1 Overview

The Permissioned service is one of the core services provided by BSN. Its goal is to

make it easy for developers to publish decentralized applications (DApps) based on the

framework of the permissioned blockchain on their selected public city nodes.

Compared with the permissionless blockchain DApp, the permissioned blockchain

DApp is more flexible in terms of architecture design, operation efficiency, and smart

contract programming. It also has a larger space for innovation. However, from the

perspective of development, because the developers need to build their underlying

environments, and the environment for the public chain is readily available, the

development, operation and maintenance of the permissioned chain DApp are relatively

difficult. The developer's off-BSN system can access to DApp for data processing

through the BSN public city node gateway.

Although BSN has greatly reduced the difficulty of permissioned blockchain DApp

development, developers still need to have an in-depth understanding of the following

three aspects which will be explained in detail in the following chapters.

1. Keys and Certificates Mechanism: the blockchain application itself is based on

encryption algorithm technology, so the requirements of the keys and certificates

are very high.

2. DApp services publication and participation: To build a permissioned blockchain

DApp, the developer should firstly set up the chain and deploy the smart contracts.

This part is entirely carried out on the BSN global portal (www.bsnbase.io),

including the operations of smart contract upload, certificate mode selection, role's

permissions setting, peer node configuration, public city node location, etc. Finally,

Blockchain-based Service Network User Manual

17

developers need to upload or download keys to facilitate the access from off-BSN

system.

3. Off-BSN system access: This part contains a detailed description of the access

parameter configuration, SDK usage, and the description of public city node

gateway APIs to which the off-BSN systems connect. The API section includes all

APIs of the currently permissioned blockchain frameworks that BSN has adapted.

5.2 BSN Keys and Certificates Mechanism

5.2.1 BSN Keys and Certificates Mechanism

Once a publisher deploys a permissioned DApp on BSN, the off-BSN systems of all

participants (including the publisher) connects to the DApp via the PCN gateways to

execute and record transactions based on the DApp’s smart contracts. During this

process, the participants need two key pairs to complete all steps: the DApp Access Key

Pair and User Transaction Key Pair. When publishing and deploying a DApp on BSN,

its publisher can choose from two modes to manage the DApp’s keys and certificates:

Key Trust Mode and Public Key Upload Mode. The key trust mode means that the two

key pairs and related certificates will be generated and hosted by BSN when a

participant joins the DApp. The participant can then download the private keys from

the BSN portal, and use them to access BSN and sign transactions sent to the DApp

from the off-BSN systems. The public key upload mode means that the two key pairs

will be generated and stored locally on the participant’s off-BSN system, and the public

key is uploaded via the BSN portal or PCN gateway API, to BSN to generate the

certificates. Once a mode is selected for the DApp, it cannot be changed. We strongly

suggest all developers use the public key upload mode which is much more flexible and

secure.

1. DApp Access Key Pair based on Key Trust Mode: DApp access key pair is used

to generate the certificate to access the PCN gateway. If the DApp is on Key Trust

Mode, the key pair can be generated on the BSN portal, and the private key can be

downloaded. Please refer to the BSN Help Manual’s service participation section.

2. User Transaction Key Pair based on Key Trust Mode: User transaction key pair is

used to verify the requests and transactions sent to the DApp. If the DApp is on

Key Trust mode, the key pair can be generated via the PCN gateway APIs by

executing requests from the off-BSN systems. If the off-BSN systems have sub-

users, it can even generate different key pairs for different sub-users. Refer to the

API sections in this document for Hyperledger Fabric and FISCO BCOS

frameworks to see how to generate the key pairs and use them to verify the

transactions.

3. DApp Access Key Pair based on Public Key Upload Mode: In this mode, the DApp

access key pair is generated and stored locally. The participant must upload the

public key to BSN via the BSN portal to generate the access certificate to the PCN

gateway. Please refer to section 5.2.2 below to see how to generate the key pair

locally. Please refer to the “Public Key Upload” section of this document to learn

how to upload the public key to BSN via the portal.

4. User Transaction Key Pair based on Public Key Upload Mode: In this mode, the

Blockchain-based Service Network User Manual

18

user transaction key pair is also generated and stored locally. Instead of using the

BSN portal, the user transaction public key (one of the pair) is sent and registered

on BSN via the PCN gateway certificate registration API. If the off-BSN systems

have sub-users, they can also upload different public keys to generate different

transaction certificates for different sub-users by using the API. Please refer to

section 5.2.2 or the instructions inside the gateway SDK package about generating

the key pair locally. Refer to the API sections in this document for registering the

certificate via gateway APIs.

Please click the link to download the PCN Gateway SDK Package:

https://github.com/BSNDA/PCNGateway-Go-SDK

https://github.com/BSNDA/PCNGateway-Java-SDK

https://github.com/BSNDA/PCNGateway-PY-SDK

https://github.com/BSNDA/PCNGateway-CSharp-SDK

Currently, both permissioned frameworks Hyperledger Fabric and FISCO BCOS

DApps support both Key Trust Mode and Public Key Upload Mode.

5.2.2 Locally generate the DApp access key pair

If the DApp service you participate in adopts Public Key Upload Mode for its

application access key, you will need to generate the pair of public and private keys on

the local client then save the private key locally and upload the public key to BSN via

the portal.

It is recommended to use the latest version of OpenSSL to generate the keys.

Please use the prime256v1 cryptographic algorithm for Hyperledger Fabric

andsecp256k1 for FISCO BCOS. The steps are as follows:

1. Preparation: Download the latest version of OpenSSL

from https://www.openssl.org/source/ and create a data.txt file in which some test

phrases are entered, such as - Hello world.

2. Input "OpenSSL" in the terminal to show the open SSL command line.

OpenSSL>

3. Input the command - "ecparam -name prime256v1 -genkey -out key.pem" to

generate a private key file key.pem.

OpenSSL> ecparam -name prime256v1 -genkey -out key.pem

4. Input the command - "ec -in key.pem -pubout -out pub.pem" to generate a public

key file pub.pem with the private key in the key.pem file.

OpenSSL> ec -in key.pem -pubout -out pub.pem

read EC key

writing EC key

https://github.com/BSNDA/PCNGateway-Go-SDK
https://github.com/BSNDA/PCNGateway-Java-SDK
https://github.com/BSNDA/PCNGateway-PY-SDK
https://www.openssl.org/source/

Blockchain-based Service Network User Manual

19

5. Input the command - "dgst -sha256 -sign key.pem -out signature.bin data.txt" to

sign the data.txt file with the private key in the key.pem file to generate the

signature file: signature.bin.

OpenSSL> dgst -sha256 -sign key.pem -out signature.bin data.txt

6. Input the command - "dgst -verify pub.pem -sha256 -signature signature.bin

data.txt". Use the public key in the pub.pem file to sign and verify the data.txt and

signature.bin files.

OpenSSL> dgst -verify pub.pem -sha256 -signature signature.bin data.txt

Verified OK

7. If "Verified OK" is displayed, input the command - "base64 -in signature.bin -out

signature64.txt" to convert the signature file signature.bin to base64 encoded

signature64.txt.

OpenSSL> base64 -in signature.bin -out signature64.txt

8. Input the command - "pkcs8 -topk8 -inform PEM -in key.pem -outform PEM -

nocrypt -out keypkcs8.pem" to convert the private key in the key.pem file to pkcs8

format.

OpenSSL> pkcs8 -topk8 -inform PEM -in key.pem -outform PEM -nocrypt -out

keypkcs8.pem

9. Save the keypkcs8.pem file locally and copy all the contents of pub.pem, data.txt,

and signature64.txt to the public key, test data, and signature data text boxes

respectively on the Public Key Upload Mode page to verify the public key and

submit it to BSN.

5.3 DApp Services Publication and Participation

5.3.1 Overview

Permissioned DApp services refer to blockchain and DLT applications that are already

deployed and operational on BSN. Users can use a BSN portal or the publisher’s

business system to apply to and join the service. Published services are private and

cannot be browsed or searched by users through the BSN portal. DApp service

participation must be initialized by the publishers’ invitation links.

5.3.2 DApp Services Publication

5.3.2.1 Create a New DApp Service

To create a new DApp service, follow these steps

1. In the BSN menu, click the Permissioned Service dropdown, in the list, click

Published Services to open the Published Services page.

Blockchain-based Service Network User Manual

20

2. On the published services page, click the Create a New Service button.

3. In the Basic Information section enter or select the following:

• Service Name – Enter an applicable name for the service to be provided

• Service Type – In the dropdown select from the various available service types

• Version – The default version 1.0.0 is entered automatically. Unless necessary,

leave it as is.

• Platform Type – Select from either Fabric-1.4.3-secp256r1 and FISCO-2.4-

secp256k1

• Service Logo – Click on the icon to locate the image on your PC. Note that

the image must be in png/jpg/jpeg format and should be exactly 160 x 160

pixels.

• Service Introduction – Enter a brief description of the service

• Service Description – Enter a detailed description of the service including text

and pictures where applicable

4. Documents – Documents can be added so that other users can easily understand

your product. Click Add to display the Add Document dialog box. Click Select to

locate the document on your PC.

Enter a Name, and choose a Type for the document. Click Confirm to add the

Blockchain-based Service Network User Manual

21

document.

5. In the Contact Information section, the login details of the user are automatically

populated, including the Contacts and Email. If necessary, you can add a

telephone number.

6. Click Next to continue.

5.3.2.2 Upload chaincode package

In the Upload chaincode package section, you can add your chaincode/smart contract

package or use the preset chaincodes available in the system.

1. To Add chaincode package, click on the button to display the Add chaincode

Package where you enter or select the following:

• Chaincode Name – Enter a name for the chaincode

• Version – Enter the chaincode version

• Chaincode Language – Select from one the languages (Java, Golang or

NodeJS)

• Initparam – enter the initialization parameters and if multiple, separate it with

commas

• Chaincode Package – Click on the icon to select the package file from the

PC. Package files are to be in the .zip file format and the file name should only

contain letters and numbers or underscores

Blockchain-based Service Network User Manual

22

2. To Use Preset Chaincode Package, click on the button to display the Select preset

chaincode package option. In the list of packages, select one of the listed packages

and click Confirm to add it.

5.3.2.3 Define Service Functions and Roles

1. By selecting a Preset chaincode package, a set of automatic service functions are

added to the service and each of the functions can be Edited, Viewed, or Deleted.

Blockchain-based Service Network User Manual

23

2. If you wish to add more functions, click the Add Functions button to display the

dialog box. In it, enter or select the following:

• Function Name – Enter a name for the function

• Chaincode Name – Select from the list of chain codes

• Chaincode FUNC type – Choose from invoke, query or event

• Chaincode FUNC – Enter a description of the function

• Superior Functions – Select a function from the list of functions in the system

3. Click Confirm to add it to the functions.

4. When the Use Preset Chaincode package is selected, a system administrator role

is automatically created with full access to the published service. To create another

role, Click Add Roles to display the Add Roles function and enter or select the

following:

• Name of Role – Enter a role name

• Description – Enter a description for the role

• Functional Authority –Choose one or more from the DApp’s existing

functions, for example: SaveData, UpdateData, RemoveData, QueryData,

and Query historical data from the preset chaincode package.

Blockchain-based Service Network User Manual

24

5. When done, click Confirm to add the role.

5.3.2.4 Select the Public City Nodes to deploy the service

Public city nodes are used by permissioned DApp publishers to deploy DApp’s peers

and smart contracts. Publishers can deploy all peers into one or more PCNs, so that all

peers connect together to form the DApp. We strongly suggest not to deploy all peers

onto one single PCN for data safety reasons. To add a public city node, follow these

steps

1. In the Select the City Nodes to deploy the service section, click Add City Nodes.

2. In the Add City Nodes window, enter or select:

• Name – Enter a name for the city code

• Disk Storage (GB) – 10 GB is allocated by default

• TPS is available – 10 is allocated by default

• Carrier – All carriers are listed, however, if you prefer a particular carrier, click

the dropdown and select that carrier

Blockchain-based Service Network User Manual

25

3. Click Search to list carriers.

4. In the list of carriers, select more than one carrier for redundancy purposes. When

done, click Confirm.

The city nodes that have enough resources according to the TPS and storage

configuration are displayed alongside their costs. The resource costs are different for

each public city node.

5.3.2.5 Select Certificate Mode

There are two certificate modes, Key Trust Mode and Public Key Upload Mode. The

key trust mode certificates are generated and hosted by BSN while the public key

upload mode certificates are generated by developers, and the private key is stored

locally and the public key is uploaded to BSN. It is recommended that all developers

use the Public Key Upload Mode.

1. To use the certificate mode, in the Certificate Mode section, click either Key

Trust Mode or Public Key Upload Mode.

2. Click Next to continue.

5.3.2.6 Pay bills and submit for approval

In the bill detail section, the resource usage fees from the added city nodes are displayed

alongside a monthly total payment fee. If the bill is satisfactory, click the Confirm

button to proceed and make the payment. However, if you need to make changes to the

bill, click Back and make changes in the Add City Nodes section.

Blockchain-based Service Network User Manual

26

Once the payment is successfully made, you will receive an email in your mailbox

informing you that your BSN service has been submitted successfully and will be

reviewed. You will be informed via email when the reviewed has finished.

Once the service has been approved, the service will be seen in the Published Services

section.

5.3.3 DApp Services Management

After the request for a service approval has been given, it will be listed in the

Permissioned Services - Published Services section. For each listed service some

Actions can be carried out. This includes Invite participants, Basic Information

Editing, Service Upgrade and Detail.

5.3.3.1 Invite participants

After the service has been approved and the service is in use, you can invite other users

of the blockchain network to participate in your service. To invite participants, follow

these steps:

1. In the BSN menu, click the Permissioned Services dropdown and click Published

Services to display the list of published services.

2. In the Action column, select the Invite Participants link to display the details to

send to participants who intend to join the service.

Click Copy to copy the link details. This can be emailed to the participants who login

with their BSN credentials to join or register with BSN first to use the service.

Blockchain-based Service Network User Manual

27

5.3.3.2 Basic Information Editing

After the service has been running and participants have joined, the publisher can edit

basic information regarding the service including service name, type, platform type,

version, service logo, documents, and contact information. To edit the basic

information, follow these steps:

1. In the list of published services, locate the service to be edited. In the Action

column of the service, select Basic Information Editing to display the editing

page.

2. Add, edit or remove the basic detail of the service and click Save to store changes.

If no changes were made click Back to return to the Published Services page.

5.3.3.3 Service Upgrade

After a service has been published, the publisher can use the Service Upgrade option

to update the smart contracts and other functions. It will be reviewed again before it can

be used. To edit the Service Upgrade, follow these steps:

1. In the list of published services, locate the service to be edited. In the Action

column of the service, choose Service Upgrade.

2. In the Basic Information page, change the Version Number, which is mandatory

and/or any other details in the Basic Information page. Click Next to upload the

new smart contracts and set functions and roles as described before.

When done, click Confirm

5.3.3.4 Configuration Upgrade

In order to join the DApp services, the publisher should send out invitation links to the

potential participant. The potential participant can then click on the link to the services'

main page and apply for the service.

To upgrade the configuration, follow these steps:

1. Go to Published Services and select the enabled service on the list. Click

configuration upgrade to enter the configuration upgrade list page as below:

Blockchain-based Service Network User Manual

28

2. Click Add to create a configuration upgrade application form, and then click Add

city nodes to add new city nodes:

3. Click Submit to submit the configuration upgrade application. When submitting,

the system will prompt the publisher to pay the corresponding configuration

upgrade fee. After the publisher confirms, the system generates the configuration

upgrade bill and deducts money from the user's credit card. Whether the payment

is successfully charged, or not, the configuration upgrade application will go

through the review process. If the payment is successfully charged and the

application is approved, the system will conduct a configuration upgrade process

and complete the upgrade; if the charge fails, the bill will be kept for 72 hours and

then expires. If the publisher still wants to upgrade the configuration, he/she needs

to apply again.

Note: The fee paid when configuring the upgrade is the upgrade fee, which makes up

the difference in the remaining payment period between the pre-upgrade configuration

and the post-upgrade configuration of the billing cycle. After the upgrade is successful,

future charges will be made according to the new configuration from the next period.

5.3.3.5 Detail

The View option allows the publisher to view all the details of the published service

including Basic Info, Deployment, Roles, Approval records, Ledger Info,

Blockchain-based Service Network User Manual

29

Comments, and Historical Version. To view these options, follow these steps:

1. In the list of published services, locate the service to be edited. In the Action

column of the service, click Detail to display the view page tabs.

2. In the Basic Info tab, you can see all the details of the service that has been

deployed including the Service name, Service type, Version, Platform type,

Service logo, Service Introduction, Service description, Documents, and

Contact Information.

3. In the Deployment tab, the information that can be viewed includes the Chaincode

package, Service function, and City Nodes.

4. In the Roles tab, the roles and their related functions are listed. To View a role,

click on the view link for that role name.

5. In the Approval records tab, you will see all the requested approval and their status

as well as time logs.

6. The Ledger Info tab shows more information about the published service than any

other tab. It shows the number of users accessed, number of transactions, peer

nodes, chaincodes, blocks, and logs of how the activities took place.

7. The Comments tab shows the comments made on the published service that can

be viewed by the publisher.

8. The Historical Version tab shows the history of the service including the Service

Name, Version, Service Type, Service Introduction, and Action.

5.3.4 DApp Services Participation

In order to join the DApp service, the publisher should send out invitation links to the

potential participant. The potential participant can then click on the link to the services'

main page and apply for the service.

5.3.4.1 Apply for a Service

To apply for a service, follow these steps:

1. Click the link that was shared. This will take you to the service information page.

2. In the service header, click Apply for the Service.

5.3.4.2 Select Roles and City Nodes

1. In the list of roles, select a role you want to use. You can click the View link in

each of the roles to see more details about the role. You can select more than one

Blockchain-based Service Network User Manual

30

role.

2. In the Public City nodes, click Add city nodes to display the Public City Nodes

the DApp is deployed on. You can select more than one node. The selected nodes’

gateways are where the off-BSN systems connect to. Please select the public city

node that is closest to you.

Click Confirm to view the nodes that were selected.

5.3.4.3 Apply Certificate Mode

Depending on the settings of the service publisher, there are two certificate modes for

service participation: Key Trust Mode and Public Key Upload Mode.

Key Trust Mode: Participants can select existing certificates on the city node or apply

for a new certificate.

Blockchain-based Service Network User Manual

31

Public Key Upload Mode: Participants should upload the public key, test data and

signature data. The generation of public and private keys can be viewed by clicking

Read Instruction.

5.3.4.4 Submit for approval

Click Confirm to join the service pending the publisher’s approval.

5.3.4.5 Approve a service

As the publisher of a service, in the service participation list, the publisher has can

approve, deny or disable a participant from using the service. To perform any of these

actions, follow these steps:

Blockchain-based Service Network User Manual

32

1. In the Service Participation List section, locate the participant to review.

2. For the participant to be reviewed, click the Review link in the Action column to

view the participant details. In the Approval Information section select either

Approved or Failed to Approve and write a comment in the Approval

Comments box to give details.

3. Click Submit for Approval or Back to return to the participant's list.

4. If the participant is approved, a message will prompt showing that the service

participation approval was successful.

5. After the approval has been given, the participant can view the service from their

Participated Services page as well as add more city nodes.

5.3.4.6 Download and renew a certificate

The BSN development team intends to build BSN into a most secure blockchain

infrastructure network. The certificate and key mechanisms of BSN are complex. There

are two kinds of key pairs used in generating certificates: DApp Access Key Pair and

User Transaction Key Pair. For each, there are two modes, the Key Trust Mode and the

Public Key Upload Mode. To work with certificates, follow these steps:

Key Trust Mode:

1. In the My Certificates menu, click Key Trust Mode. The certificate page will be

displayed.

Blockchain-based Service Network User Manual

33

2. To download the certificate, click the icon. You will be required to enter the

certificate password.

3. To update the certificate, click the Certificate update link. You will be requested

to set a password for the certificate and confirm the password.

4. Click Confirm to update the certificate.

Public Key Upload Mode:

1. In the My Certificates menu, click Public Key Upload Mode. The certificate page

will be displayed.

2. To update the certificate, the public key, test data and signature data need to be re-

uploaded, and the update can only be completed after the test passes.

Blockchain-based Service Network User Manual

34

3. The user only needs to upload the public key in the Public Key Upload Mode. The

private key is kept locally by the user, so there is no need to download the certificate.

5.3.4.7 Configuration parameters for service access

To view and download the configuration parameters, follow these steps:

1. In the Permissioned Services menu, click Participated Services.

2. In the list of services, click the Detail option in the Action column for the service.

3. Click the dropdown beside the configuration parameters for service access to

view its configuration.

Blockchain-based Service Network User Manual

35

4. To download the parameters for service access, click Download the

configuration parameters to begin the download.

5.4 Off-BSN system Access Guide

5.4.1 Overview

Blockchain-based Service Network (hereinafter “Service Network” or “BSN”) is a

cross-cloud, cross-portal, cross-framework global infrastructure network to deploy and

operate all types of blockchain and distributed ledger technology (DLT) applications

(DApp).

BSN aims to lower the cost of developing and deploying DApps by providing public

blockchain resources and environment to developers, just like the internet. It can further

reduce the costs associated with the development, deployment, operations,

maintenance, and regulation of DApps and, thereby, accelerate the development and

universal adaptation of blockchain and DLT technologies.

Blockchain-based Service Network User Manual

36

A complete DApp system based on BSN generally consists of two parts: the on-BSN

DApp smart contracts and the off-BSN systems. The off-BSN systems use the BSN

Public City Note (PCN) gateways to invoke the DApp smart contracts deployed on the

PCN to carry out on-chain operations such as executing transactions, writing data chain,

data queries, etc. The DApp service publishers and participants can deploy their off-

BSN systems on any cloud services they choose and then connect to the BSN PCN

gateways through the internet access DApp smart contracts and data.

The BSN DApp service publishers and participants should have their off-BSN systems

so that they can access the DApp smart contracts to execute transaction and query data

via the PCN gateway APIs. The following are the charts to show the connecting flow

and transaction sequences.

Off-BSN System Connection Flow:

Off-BSN System

Public City Node(PCN)

PCN Gateway

Peer Node

Transaction Endorsement

Smart Contract/Chaincode

Events

Ledger

Blockchain-based Service Network User Manual

37

Blockchain-based Service Network User Manual

38

Off-BSN System calling sequence:

Off-BSN
System

User

Visit

Invoking PCN Gateway
APIwith Access and TLS

certificates

Return Chaincode
Transaction Result

Return Results

PCN
Gateway

DApp

Invoking Chaincode Functions
and execute transactions

Return chaincode
transaction result

Block written into Ledger

Return chaincode transaction
final result

Authority
Chain

Verifying identity
and authority

Return verfication
result

Sccessful

Blockchain-based Service Network User Manual

39

5.4.2 BSN Smart Contract Package Requirements

A smart contract, also known as chaincode in Hyperledger Fabric, is a computer protocol

intended to digitally facilitate, verify, or enforce the negotiation or performance of a contract.

Smart contracts allow the performance of credible transactions without a third party. These

transactions are trackable and irreversible. A smart contract is invoked to automatically execute

a transaction and operate ledger data. A DApp service on BSN can deploy multiple smart

contracts. Each smart contract can contain multiple functions.

5.4.2.1 Hyperledger Fabric smart contract package requirements

Hyperledger Fabric (“Fabric”) chaincode can be compiled by multiple programming

languages, including Golang, java, and node.js. Each chaincode program must implement a

chaincode interface which usually consists of three basic functions: Init, Invoke, and Query.

⚫ Init: This function is called during the chaincode instantiation and its purpose is to prepare

the ledger for future requests. This function must be implemented in all chaincodes.

⚫ Invoke: The Invoke function is called for all future requests from the off-BSN systems

towards the DApps. Here all DApp custom functions or what the DApps can do (for

example, to read data from the ledger, to write data in the ledger, to update data, to delete

data) are defined. Simply put, Invoke can be understood as an entry point to the chaincode

functions. The Invoke function also must be implemented in all chaincodes.

⚫ Query: The Query function provides a method of querying ledger data. This function can

only be used for query purposes and does not offer any operations of ledger data. The Query

function is not required to be implemented in all chaincodes.

To realize the automatic deployment of DApp services and to improve deployment efficiency,

the following Fabric chaincode packaging requirements have been issued with different

programming languages.

1. Golang

The main function must be at the same or higher level as all chaincodes in the project. The

zipping path must be the same level folder where the main function is located, and the main

function path is the src-based path.

Example: BsnBaseCC Package (the preset chaincode package)

BsnBaseCC

├─main.go

├─ChainCode/

├─models/

└─utils/

The package should be zipped under BsnBaseCC/ (package name is not required), and the main

function path (reference path) is BsnBaseCC.

Example: FabricBaseChaincode chaincode package on github (preset chaincode package)

Blockchain-based Service Network User Manual

40

github.com

 └─BSNDA

 └─FabricBaseChaincode

 └─chaincode

 └─go

 └─bsnBaseCC

 └─main.go

 └─ChainCode/

 └─models/

 └─utils/

It should be zipped under

github.com/BSNDA/FabricBaseChaincode/chaincode/go/bsnBaseCC/ (package name is not

required), and the main function path (reference path) is

github.com/BSNDA/FabricBaseChaincode/ chaincode/go/bsnBaseCC.

Description: main.go: the entry; ChainCode: chaincode; models: entities; utils: utilities.

2. Java

gradle or maven-built projects, the projects must contain build.gradle or pom.xml files.

Example: BsnBaseCC package

BsnBaseCC

 └─build.gradle

 └─src

 └─main

 └─java

 └─com.example.javacc

 └─javacc.java

Package needs to be zipped under BsnBaseCC/. Zip package name is not required.

Description: src/main/java: project directory; com.example.javacc: package name; javacc.java:

chaincode information

Blockchain-based Service Network User Manual

41

3. Node.Js

package.json must be built into the project’s root directory. Package needs to be zipped

under BsnBaseCC/. Zip package name is not required.

Example: BsnBaseCC package

BsnBaseCC

 └─marbles_chaincode.js

 └─package.json

Description: marbles_chaincode.js: chaincodes

Note: when publishing DApp services in the BSN portal, chaincode packages should be created

in the project’s root directory using .zip format.

5.4.2.2 Hyperledger Fabric prebuilt smart contract package

A prebuilt chaincode package (Golang) is provided to BSN developers which contains basic

functions such as add, delete, edit, and query. New DApp developers can learn from this

package about Fabric chaincode programming and further extend the functions if needed. The

chaincode in this package supports data types such as string, integer, float point, and sets (map,

list), etc.

Please click this link to download:

https://github.com/BSNDA/FabricBaseChaincode

DApp publishers can also select the prebuilt chaincode package directly from the DApp

publishing page on the BSN portal.

The Prebuilt Chaincode package functions are as follows:

1. Add data (set)

Input parameter description:

baseKey: a unique primary key identifier of data

baseValue: stored data information

Example: {"baseKey": "str","baseValue": "this is string"}

Of which, the baseKey cannot be a blank string and the baseValue can be any type of data.

If the baseKey already exists, then directly return that it already exists and cannot be added;

if it does not exist, then add data.

2. Edit data (update)

Input parameter description:

baseKey: a unique primary key identifier of data

 baseValue: stored data information

Blockchain-based Service Network User Manual

42

Example: {"baseKey": "str","baseValue": "this is string"}

Of which, the baseKey cannot be a blank string and the baseValue can be any type of data.

If the baseKey does not exist, then it cannot be updated; if it already exists, then update

the data.

3. Delete data (delete)

Input parameter description

baseKey: a unique primary key identifier of data

Example: "str"

Of which, the baseKey value cannot be blank and must exist, else it cannot be deleted.

4. Get data (get)

Input parameter description

baseKey: a unique primary key identifier of data

Example: "str"

Of which, the baseKey value cannot be blank and must exist, else it cannot be retrieved.

5. Get history ledger data (getHistory)

Input parameter description

baseKey: a unique primary key identifier of data

 Example: "str"

Of which, the baseKey value cannot be blank. Response results: transaction Id (txId),

transaction time (txTime), whether to delete (isDelete) and transaction information (dataInfo).

5.4.2.3 FISCO BCOS smart contract package requirements

To realize automatic audit and deployment of FISCO BCOS (FISCO) DApp services and to

improve efficiency, the following FISCO smart contract packaging requirements have been

issued:

1. Package Structure of the Solidity smart contract

All smart contracts must be stored in a single-level folder including smart contracts, libraries,

and external contract interfaces. Import method of all contracts is import “./XXXX.sol”.

2. Smart Contract deployment instruction document (deploy.md)

deploy.md is used to explain clearly how the smart contract is initialized and deployed. It

consists of three main parts:

• Contract Description: to briefly describe the basic information of each contract.

• User Description: to describe the basic information of each transaction signing users

during initialization and deployment.

Blockchain-based Service Network User Manual

43

• Contract initialization description: to describe the steps of smart contract initialization

and deployment, so that BSN tech personnel can follow to complete the process.

3. Contract uploading specifications

When uploading a chaincode package (smart contract package), fill in the chaincode name

(contract name) that is consistent with the main contract class name and the main contract file

name.

Example: BsnBaseGlobalContract chaincode package (preset chaincode package)

 BsnBaseGlobalContract

 └─BsnBaseGlobalContract.sol

 └─Table.sol

Package must be zipped under BsnBaseGlobalContract/. The zipped package name is not

required. If the main contract class name is BsnBaseGlobalContract, the main contract file

name should be BsnBaseGlobalContract.sol, and the chaincode name (contract name) must be

filled in as BsnBaseGlobalContract.

4. BSN Adaptation for FISCO Solidity Version Descriptions

Currently, FISCO BCOS in the BSN only supports Solidity 0.4.25 and older versions.

5.4.2.4 FISCO BCOS prebuilt smart contract package

The FISCO Prebuilt Smart Contract package is chosen from the Table.sol provided by the

FISCO BCOS development team, and can provide developers with basic functions such as

insert, remove, update, or query (using Solidity). New DApp developers can learn from this

package about FISCO smart contract programming and further extend the functions, if needed.

The stored data types supported by this smart contract include int256(int), address, and string,

of which string cannot exceed 16MB. To ensure on-chain performance, there is no analysis of

duplicate base_id and base_key. This should be handled by the off-BSN system. It is

recommended that each base_id has only one corresponding base_key and base_value.

Please click this link to download:

https://github.com/BSNDA/FISCOBaseContract

The prebuilt smart contract functions are as follows:

1. Insert data (insert)

Input parameter description

base_id: the primary key identifier that requires inserting

base_key: the key of the data to be inserted

base_value: the value of the data to be inserted

Example: {"base_id": "1","base_key":1,"base_value":"this is string"}

Of which, base_id and base_value cannot be blank strings and the base_key is in int256

data type.

2. Update data (update)

Input parameter description

base_id: the primary key identifier that requires updating

Blockchain-based Service Network User Manual

44

base_key: the key of the data to be updated

base_value: the value of the data to be updated

Example: {"base_id":"1","base_key":"1","base_value":"this is string"}

Of which, base_id and base_value cannot be blank strings and the base_key is in int256

data type. If the base_id and base_key do not exist, then they cannot be updated; if they

already exist, then the data will be updated.

3. Remove data (remove)

Input parameter description

base_id: the primary key identifier that requires removing

base_key: the key of the data to be removed

Example: {"base_id":"1","base_key":"1"}

Of which, the base_id and base_value cannot be blank and must exist, otherwise they

cannot be removed.

4. Select data (select)

Input parameter description

base_id: the value of the primary key identifier that requires being selected

Example: {"base_id":"1"}

Of which, the base_id cannot be blank and must exist, otherwise, it is not possible to select the

corresponding data.

5.4.3 PCN Gateway Fabric API

A PCN gateway is deployed on each public city node (PCN) to receive off-BSN system

requests signed and verified by DApp access keys. Then requests are routed to the

corresponding Fabric-based DApp chaincodes. Invoking the PCN gateway is realized by

sending HTTP requests to each PCN gateway service. The gateway is responsible for verifying

user and application identities and then uses these identities and chaincode functions to process

chaincode parameters and to send the chaincode transaction results back to the off-BSN

systems.

5.4.3.1 DApp Access Signature Algorithm

Whenever an off-BSN system sends requests to the PCN gateway, the HTTP request message

should be signed with the participant’s DApp access private key. When the PCN gateway

receives the message with the digital signature, it will verify the authentication and message

integrity with the corresponding hosted or uploaded DApp access public key. The gateway will

only process the request message further after the verification is passed.

1. Assemble signature string

Convert the request parameters into a joined string according to the order of the parameter

table, of which the request parameter prioritizes joining UserCode and AppCode of the Header

and the response parameter prioritizes joining code and msg. Then join the parameters in the

Body according to the order of the parameter tables in the definition of APIs.

2. Different type conversion formats

Blockchain-based Service Network User Manual

45

Type Rule Example Result

String No conversion abc Abc

Int/int64/long Decimal conversion -12 -12

Float
Decimal conversion; see notes for

values after decimal point
1.23 1.23

Bool Convert to “true” or “false” true True

Array
Join according to parameter

sequence and type
{“abc”, “xyz”} Abcxyz

Map[key]valu

e

Join key and value according to

parameter sequence
{“a”:1, “b”:2} a1b2

Object

Convert the attributes in the object

one by one according to the

document in the above-described

format

{“name”: “abc”,

“secret”: “123456”}

abc12345

6

3. Signature rules

• Getting the Hash value - The converted string to be signed is required to be computed

with the SHA256 algorithm with UTF-8 encoding.

• Sign the Hash value - The hash value and private key should be encrypted with the

ECDSA (secp256r1) algorithm. If signed with SHA256WithECDSA, which includes

hash value computation, the first step is not necessary.

• Encoding the signature result to Base64.

4. Example

Parameters:

{"header":{"userCode":"user01","appCode":"app01"},"mac":"","body":{“userId”:”abc”,”list

”:[“abc”,”xyz”]}}

Result: user01app01abcabcxyz

5.4.3.2 Key and Certificate Modes

1. Key Trust Mode

As described in chapter 5, DApp participants require two sets of key pairs to access the DApp:

DApp access key pair and user transaction key pair. With key trust mode, the pairs are

generated and hosted by BSN. The participants only need to download the private key (DApp

access key) from the BSN portal.

⚫ DApp Access Key Pair: After the participant has successfully joined the DApp, BSN will

generate one key pair (private and public keys) that corresponds to the DApp’s framework

algorithms under the Key Trust Mode. The participant can download the private key from

the “My Certificates” section of the BSN global portal and use it to sign the request message

sent to the PCN gateway. The gateway will use the hosted public key from the generated

key pair to validate the signature.

⚫ User Transaction Key Pair: This is the identity of a participant used to invoke the

chaincodes. Under the Key Trust Mode, after successfully joining a DApp, a participant’s

user transaction key pair will be created automatically by BSN by default. The participant’s

off-BSN system can use the participant’s UserCode to invoke the certificate generated by

the key pair. If the participant’s off-BSN system has multiple sub-users, the off-BSN

system can invoke the gateway’s “User Registration API” to register the sub-users and

Blockchain-based Service Network User Manual

46

generate separate user transaction key pair for each sub-user. The sub-users can use their

UserCode to connect to the DApp to execute transactions.

Transaction process:

2. Public Key Upload Mode

As described in chapter 5, DApp participants require two sets of key pairs to fully access the

DApp: DApp access key pair and user transaction key pair. With public-key upload mode, the

key pairs are generated and stored locally by the participants. The participants only need to

upload the public keys to BSN via the BSN portal or gateway APIs.

⚫ DApp Access Key Pair: The DApp participant must generate the DApp access key pair

locally according to the DApp framework algorithm after successfully joining the DApp.

The participant stores the private key locally and uploads the public key to BSN via the

BSN global portal. The participant’s off-BSN system uses the private key to sign the

transaction messages when invoking the PCN gateway. The PCN gateway will use the

public key uploaded by the participant to verify the signature and validate the legality of

the transaction.

⚫ User Transaction Key Pair: This is the identity of a participant to invoke the chaincodes.

Under the Key Trust Mode, the participant must generate the user transaction key pair

locally and use the public key to generate the “public key registration application.”, then

from the participant’s off-BSN system to submit the registration application to BSN by

invoking the “Public Key Upload Mode user certification registration” API on the PCN

gateway to receive the public key certificate. If the off-BSN system has sub-users, it should

first invoke the “User Registration” API to register the sub-users before sending their public

key registration applications.

Off-BSN System PCN Gateway

1. Invoking "User Registration" API

1.1 Return User information

2. Invoking "Key Trust Mode Invoking
chaincode" API

2.1 Return transaction result

3. Invoking "Retrieving Transaction
information" API

3.1 Return transaction result

Blockchain-based Service Network User Manual

47

Transaction process:

5.4.3.3 Retrieving DApp information API

Invoke this interface to get certain basic DApp information; this interface can be used with

Public Key Upload Mode transactions.

1. Interface address:

https://PCNgatewayAddress/api/app/getAppInfo

2. Call Method: POST

3. Signature Algorithm: Not Required

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Yes

2 Body body Map No

3 Signature value mac String Yes

Header

1 User unique ID userCode String Yes

2 DApp unique ID appCode String Yes

Body

Example:

Off-BSN
System

PCN Gateway

1. Invoking "user registration" API

1.1 return user information

4. Invoking "Public Key Upload Mode
Invoking Chaincode" API

4.1 Return transaction result

5. Invoking "Retrieving Transaction
information" API

5.1 Return transaction info

2. Invoking "User Certificate
registration" API

2.1 Return certificate info

3. Assemble
Transaction
Parameters

https://pcngatewayaddress/api/app/getAppInfo

Blockchain-based Service Network User Manual

48

{"header":{"userCode":"USER0001202004151958010871292","appCode":"app0001202

004161020152918451","tId":""},"mac": "","body":{}}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature value mac String Y

Header

1 Response ID code int Y
0: successful

-1: failed

2 Response Message msg String Y

Body

1 DApp name appName String Y

2 DApp type appType String Y

3
DApp encryption

key type
caType Int Y

1: Key Trust Mode

2: Public Key Upload

Mode

4
DApp algorithm

Type

algorithmTy

pe
Int Y

1: SM2

2: ECDSA (secp256r1)

5 City MSPID mspId String Y

6 DApp chain name channelId String Y

Fabric corresponding

channelId, fisco

corresponding groupId

Example:

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEUCIQDE9zv0E/w4V/ILG6wUCFP08a7NDCAtX/IoZOcCyY4gIQIgUTYWsFTA1KE8

8gE6452jKnnVBrhznGVOV2HPMCbNh8A=",

 "body": {

 "appName": "sdktest",

 "appType": "fabric",

 "caType": 2,

 "algorithmType": 2,

 "mspId": "OrgbNodeMSP",

 "channelId": "app0001202004161020152918451"

 }

}

5.4.3.4 User Registration API

Under the both Key Trust Mode and Public Key Upload Mode, when a participant joins, a

Fabric DApp needs to create user transaction key certificates for the sub-users of his/her off-

BSN system. The off-BSN system should invoke the User Registration API to register the sub-

users on the PCN first. A sub-user’s username is name@appCode in the call parameters

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/user/register

https://pcngatewayaddress/api/fabric/v1/user/register

Blockchain-based Service Network User Manual

49

2. Call Method: POST

3. Signature Algorithm: required and refer to Section 5.4.3.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map N

3 signature value mac String Y

Header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Body

1 user name name String Y Length<20

2 user password secret String N

For Key Trust Mode DApps,

this can be blank; for public

key upload mode DApp, if this

is blank then return with a

random password

Example:

{"header":{"userCode":"USER0001202004151958010871292","appCode":"app000120200

4161020152918451","tId":""},"mac":"MEUCIQDCa3T1c8Fim3LFVfgvelllC/wKWtFnyOl

5FK7FXgddFwIgGHXApypixu9RpkHl13z80ZYdVeyRObX7icU3XWk2+VI=","body":{"n

ame":"user01","secret":"123456"}}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3
Signature

Value
mac String Y

Header

1 Response ID code int Y
0: successful

-1: failed

2
Response

Message
msg String Y

Body

1 user name name String Y Length<20

2
user

password
secret String Y

For public key upload mode

DApps, if the call parameter

password is blank then return

with a random password

Example

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEUCIQClfufMU8kRI1gMHIGqfWOh1iv2KIhS+H0dlUUdEuUrLQIgYJz98xp5w/KdV

P6bJjHhV2pZPTe9Cn4xcOrPV4E7ZsA=",

 "body": {

 "name": "user01",

 "secret": "123456"

 }

Blockchain-based Service Network User Manual

50

}

5.4.3.5 Key Trust Mode invoking chaincode API

For key trust mode DApp, when the off-BSN system invokes the chaincode functions via PCN

gateway, it is required to include the call parameters in the request. The gateway will return the

execution result from the chaincode.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/node/reqChainCode

This interface will directly respond the result without waiting for the generation of blocks.

Please use the interface “Retrieving transaction information” described in section 5.4.3.8 to

check the status of a block generated based on transaction ID.

Note: After a participant has successfully joined in a DApp service, the participant can view

and download the DApp’s configuration parameters which are used for off-BSN systems to

connect to this DApp’s chaincodes, including the PCN gateway address and Dapp access keys,

as shown below:

2. Call Method: POST

3. Signature Algorithm: required and refer to Section 5.4.3.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 user unique ID userCode String Y

2
DApp unique

ID
appCode String Y

3
User and DApp

mapping ID
tId String N

Body

Blockchain-based Service Network User Manual

51

1 user name userName String N

 random string nonce String Y
Use 24 random byte array

of the base64 encoding

1 chainCode chainCode String Y

2 function name funcName String Y

3 Call parameters args String[] N

4 Transient data transientData

Map<str

ing,strin

g>

N

Example:

{"header":{"userCode":"USER0001202004161009309407413","appCode":"app0001202004

161017141233920","tId":""},"mac":"MEQCICJpE1jfeJKtw/ZboVuKSLy2RmmSdkhrEVPG

FJhm9IaIAiA/Qqs6RNz0ndSS4/AFSwBj7vC76Py1hXnqO5zMD9pNtA==","body":{"userN

ame":"","nonce":"lgH7Ozfv6npqg9D3pSbq9c6o+rAcpa5D","chainCode":"cc_app000120200

4161017141233920_00","funcName":"set","args":["{\"baseKey\":\"test2020048\",\"baseValu

e\":\"this is string \"}"],"transientData":{}}}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3
Signature

Value
mac String Y

Header

1 Response ID code int Y
0: authentication successful

-1: authentication failed

2
Response

Message
msg String N if code=0 then can be null

Body

1
block

information
blockInfo blockInfo N

If code is not 0, then leave

blank

2

chaincode

response

result

ccRes ccRes N
If code is not 0, then leave

blank

blockInfo

1
Transaction

ID
txId String Y

2 Block HASH blockHash String N
On synchronous mode

returns Block HASH

3 status value status Int Y

Refer to the detailed

transaction status

description in 6.3.13

ccRes

1

chaincode

response

status

ccCode Int Y
200: Successful

500: Failed

2

chaincode

response

result

ccData Str N
Actual chaincode response

result

Example

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

Blockchain-based Service Network User Manual

52

 },

 "mac":

"MEUCIQCBtfO1AfYkoJ2hIlp8CfKK1iuhVEAYkPY8YFRAdvPJlAIgDjSqYgwlORJRyF6

KZPU/uC5Fx/DxXxu9VgKwU9+JhjU=",

 "body": {

 "blockInfo": {

 "txId": "a144149150ee615a9d11c68485600f43dc2c3eb2a98d7b36de53a6b99e03c495",

 "blockHash": "",

 "status": 0

 },

 "ccRes": {

 "ccCode": 200,

 "ccData": "SUCCESS"

 }

 }

}

5.4.3.6 Public Key Upload Mode user certification registration

For public-key upload mode DApp, after the participant registered its sub-users on the PCN by

using the “User Registration” interface (section 5.4.3.4), use this interface to upload public key

registration applications and receive the certificates (DApp access key pair certificates) for the

sub-users. Invoking this interface from Key Trust Mode DApp will return an error.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/user/enroll

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map N

3
Signature

Value
mac String Y

Header

1 user unique ID userCode String Y

2
DApp unique

ID
appCode String Y

Body

1 user name name String Y
user name used at

registration

2 user password secret String Y
Password created at

registration

3

Certificate

Application

file content

csrPem string Y

Use the ECDSA

(secp256r1) algorithm

to generate the

certificate application

file; the certificate CN

is name@appCode

Example:

https://pcngatewayaddress/api/fabric/v1/user/enroll

Blockchain-based Service Network User Manual

53

{"header":{"userCode":"USER0001202004151958010871292","appCode":"app00012020

04161020152918451","tId":""},"mac":"MEQCICQaYMzs+edIQkfpt5hoaSO5dWqcrY7Q

75FYwyJo/B4rAiAQ10aEpdNATsZYHVcJJ4TxVCgY8XdQBBIyTAOqUmSjkw==","bo

dy":{"name":"user01","secret":"123456","csrPem":"-----BEGIN CERTIFICATE

REQUEST-----

\nMIHoMIGQAgEAMC4xLDAqBgNVBAMMI3VzZXIwMUBhcHAwMDAxMjAyMD

A0MTYxMDIw\nMTUyOTE4NDUxMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgA

Enguk1xunmuU1bnKB\nam8QmeK6Geg/O6kL2D2ig85UMQTpG/sb9iYkduz8iC9SRnF

9TvLiHuvJX2FGAOAQ\nK1Vz8aAAMAoGCCqGSM49BAMCA0cAMEQCIE19Iin91

KlfEvfFIbxhF14enFHhtvOU\n5rK86huFiMMQAiBYXO4fJBq6eLGjaavR71O9fOvVZ5

W7X+GQjIlQDuDgPQ==\n-----END CERTIFICATE REQUEST-----\n"}}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 Response ID code int Y

0:

successful

-1: failed

2 Response Message msg String Y

Body

1 Certificate content cert String Y

Example

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEUCIQCE0gg5VHWsZluNKAV2+xOJANGnCkw6f9J4+mFT1TWz/gIgfu93jqzTzk0

DU2lfMKnExcwVbgelWMLvLmwKplCXNBA=",

 "body": {

 "cert": "-----BEGIN CERTIFICATE-----

\nMIICvTCCAmSgAwIBAgIUcqn2HmCYmq/V2yKbnxuvc49KU00wCgYIKoZIzj0EA

wIw\nTjELMAkGA1UEBhMCQ04xEDAOBgNVBAgTB0JlaWppbmcxDDAKBgNVB

AoTA0JTTjEP\nMA0GA1UECxMGY2xpZW50MQ4wDAYDVQQDEwVic25jYTAgF

w0yMDA0MjEwNTAzMDBa\nGA8yMTAwMDMyMTExMDQwMFowbDE8MA0GA

1UECxMGY2xpZW50MA8GA1UECxMIb3Jn\nYm5vZGUwDgYDVQQLEwdic25iYX

NlMAoGA1UECxMDY29tMSwwKgYDVQQDDCN1c2Vy\nMDFAYXBwMDAwMTI

wMjAwNDE2MTAyMDE1MjkxODQ1MTBZMBMGByqGSM49AgEGCCqG\nSM49

AwEHA0IABJ4LpNcbp5rlNW5ygWpvEJniuhnoPzupC9g9ooPOVDEE6Rv7G/Ym\nJH

bs/IgvUkZxfU7y4h7ryV9hRgDgECtVc/Gjgf8wgfwwDgYDVR0PAQH/BAQDAgeA\n

MAwGA1UdEwEB/wQCMAAwHQYDVR0OBBYEFG28toKRbzJTFa6v/xlIYr6S9Eva

MB8G\nA1UdIwQYMBaAFAcI4H+kIs8vn94ZYYpkrd+5ldMKMIGbBggqAwQFBgcI

AQSBjnsi\nYXR0cnMiOnsiaGYuQWZmaWxpYXRpb24iOiJvcmdibm9kZS5ic25iYXN

lLmNvbSIs\nImhmLkVucm9sbG1lbnRJRCI6InVzZXIwMUBhcHAwMDAxMjAyMDA

0MTYxMDIwMTUy\nOTE4NDUxIiwiaGYuVHlwZSI6ImNsaWVudCIsInJvbGUiOiJjb

GllbnQifX0wCgYI\nKoZIzj0EAwIDRwAwRAIgLtlTps/DOHK8S3La7bnlChB+88b1Fk

o9bOAL36oAFPIC\nIHQPCC30MoTHIId/X3fC5IxNukssmlMnEuDX73zRL55/\n-----

END CERTIFICATE-----\n"

 }

}

Blockchain-based Service Network User Manual

54

5.4.3.7 Public Key Upload Mode invoking chaincode API

For Public Key Upload Mode DApp, the participant needs to assemble the transaction message

locally, and invoke this interface to initiate the transaction from the off-BSN system to the

DApp’s chaincode.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/node/trans

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

No. Field name Field Type Required Remark

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

Header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Body

1 Transaction data transData String Y

the transaction data

should be encoded

with base64

Example:

{"header":{"userCode":"USER0001202004151958010871292","appCode":"app0001202

004161020152918451","tId":""},"mac":"MEUCIQCv8EZ2OqbSbI9xGGKX06Mquh+g

+NhhbUoAJBbnemXdagIgNMF7W7ecu5uej9BpVx04qwJuVijbgcp3VYIcjDK0Z38=","

body":{"transData":"Cq0KCrsJCpcBCAMaCwi9gPr0BRD0o+Z2IhxhcHAwMDAxMjA

yMDA0MTYxMDIwMTUyOTE4NDUxKkBjM2M2NTIzOTU4YzM4MTExOTJiOGQ

zNThkZDI2MTdmMWIxNGNiNjYxZGU2YjAyMmMxYTgyMjI2OWU4YThjNDhkOi

YSJBIiY2NfYXBwMDAwMTIwMjAwNDE2MTAyMDE1MjkxODQ1MV8wMBKeC

AqBCAoLT3JnYk5vZGVNU1AS8QctLS0tLUJFR0lOIENFUlRJRklDQVRFLS0tLS0K

TUlJQ3ZUQ0NBbVNnQXdJQkFnSVVWanBGZTJFaERFaHJlOHBBVTh4bkd3dXhPb

U13Q2dZSUtvWkl6ajBFQXdJdwpUakVMTUFrR0ExVUVCaE1DUTA0eEVEQU9CZ

05WQkFnVEIwSmxhV3BwYm1jeEREQUtCZ05WQkFvVEEwSlRUakVQCk1BMEdB

MVVFQ3hNR1kyeHBaVzUwTVE0d0RBWURWUVFERXdWaWMyNWpZVEFnRnc

weU1EQTBNVGt3TkRNek1EQmEKR0E4eU1UQXdNRE15TVRFeE1EUXdNRm93Y

kRFOE1BMEdBMVVFQ3hNR1kyeHBaVzUwTUE4R0ExVUVDeE1JYjNKbgpZbTV2

WkdVd0RnWURWUVFMRXdkaWMyNWlZWE5sTUFvR0ExVUVDeE1EWTI5dE1T

d3dLZ1lEVlFRRERDTjBaWE4wCk1ESkFZWEJ3TURBd01USXdNakF3TkRFMk1U

QXlNREUxTWpreE9EUTFNVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUcKU000OUF

3RUhBMElBQk5YZmFMVW1wMXlJSFVMMXVKeEdwMDFQNHE5Zk81V2xFMF

ZtallYQmVMejBhYlhqSU96NwpYb29KcGRUS1ZkUUJaZzYrZkVPWmhudm1vbUR

XWjRpdTRhYWpnZjh3Z2Z3d0RnWURWUjBQQVFIL0JBUURBZ2VBCk1Bd0dBM

VVkRXdFQi93UUNNQUF3SFFZRFZSME9CQllFRkZZRDg5emtkVllRbzZpUEh3d2R

JejNaQ1lSck1COEcKQTFVZEl3UVlNQmFBRkFjSTRIK2tJczh2bjk0WllZcGtyZCs1b

GRNS01JR2JCZ2dxQXdRRkJnY0lBUVNCam5zaQpZWFIwY25NaU9uc2lhR1l1UVda

bWFXeHBZWFJwYjI0aU9pSnZjbWRpYm05a1pTNWljMjVpWVhObExtTnZiU0lzCkl

taG1Ma1Z1Y205c2JHMWxiblJKUkNJNkluUmxjM1F3TWtCaGNIQXdNREF4TWpBe

U1EQTBNVFl4TURJd01UVXkKT1RFNE5EVXhJaXdpYUdZdVZIbHdaU0k2SW1Oc

2FXVnVkQ0lzSW5KdmJHVWlPaUpqYkdsbGJuUWlmWDB3Q2dZSQpLb1pJemowR

https://pcngatewayaddress/api/fabric/v1/node/trans

Blockchain-based Service Network User Manual

55

UF3SURSd0F3UkFJZ1ZZNi9jZ1NDTmpENkxwTXVaZEQzVWYvWko5c3FSUVVT

R3hSQU9SeGZONThDCklFN0JHTDljOHRCcHJiVmpYTldtQmpObWhqeUE3N0l3S

W8rbUg1ZXp4R1B1Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0KEhiQKmgB1Ibwb

gLAyoHXUNnjZSGOqBDheQMSbQprCmkIARIkEiJjY19hcHAwMDAxMjAyMDA0

MTYxMDIwMTUyOTE4NDUxXzAwGj8KA3NldAo4eyJiYXNlS2V5IjoidGVzdDIw

MjAwNDA0IiwiYmFzZVZhbHVlIjoidGhpcyBpcyBzdHJpbmcgIn0SRjBEAiB+mOUK

Y7fRjcZ1/qc96YP9GGod3UK56jJaWaE4o3J90QIgeirrjyzL6zQLN89tv3jDpI7vxKChk

GM9u8IEFiFEGYo="}}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3
Signature

Value
mac String Y

Header

1 Response ID code int Y

0: authentication

successful

-1: authentication

failed

2
Response

Message
msg String N If code=0, can be null

Body

1
block

information
blockInfo blockInfo N

If code is not 0, then

leave blank

2
chaincode

response result
ccRes ccRes N

If code is not 0, then

leave blank

blockInfo

1 Transaction Id txId String Y

2 Block HASH blockHash String N
On synchronous mode,

returns Block HASH

3 status value status Int Y

refer to detailed

transaction status

description in 6.3.13

ccRes

1
chaincode

response status
ccCode Int Y

200: successful

500: failed

2
chaincode

response result
ccData Str N

actual chaincode

response result

Example

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEQCICXNk40O+Gkqqe2XgoaxdOoIvDQe4RfLtwXkxjC7ce8TAiBLVu6PjOqWueV

B3t4h7REpNdcVf6L0qVzfdA1yovuc7g==",

 "body": {

 "blockInfo": {

 "txId":

"c3c6523958c3811192b8d358dd2617f1b14cb661de6b022c1a822269e8a8c48d",

 "blockHash": "",

 "status": 0

Blockchain-based Service Network User Manual

56

 },

 "ccRes": {

 "ccCode": 200,

 "ccData": "SUCCESS"

 }

 }

}

5.4.3.8 Retrieving transaction information API

The off-BSN system can use this interface to get the transaction information based on

transaction ID.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/node/getTransaction

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Body

1 transactionId txId String Y

Example:

{"header":{"userCode":"USER0001202004151958010871292","appCode":"app0001202

004161020152918451","tId":""},"mac":"MEUCIQDIbcNl+C1iBbXWGW3qjhf80IRgC

gvJuyxx0WXU2vn2TAIgZgA020L2aXBtrdLsYEkYPyiOJ9+AFrXOEwfuzy8B4bE=","

body":{"txId":"c3c6523958c3811192b8d358dd2617f1b14cb661de6b022c1a822269e8a8

c48d"}}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3
Signature

Value
mac String Y

Header

1 Response ID code int Y

0: authentication

successful

-1: authentication

failed

2
Response

message
msg String N

if code=0 then can

be null

Body

1 Block Hash blockHash String Y

2 Block blockNumber Long Y

https://pcngatewayaddress/api/fabric/v1/node/getTrans

Blockchain-based Service Network User Manual

57

Number

3
Transaction

status
status Int Y

refer to detailed

transaction status

description in

6.3.13

4
on-chain

user name
createName String Y

5
Timestamp

Second
timeSpanSec Int64 Y

“second” in the

timestamp

6
Timestamp

Nanosecond
timeSpanNsec Int64 Y

“nanosecond” in

the timestamp

Example

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEUCIQDUFw5pa4QJcEiQjYeLTl2L94HbsZbz7DArF+djgzWoTQIgU8u+dG6CcHw

BZjuf9PvhYdEFAa/ujwo8UAPbAmKxRq0=",

 "body": {

 "blockHash":

"ab9366cf63881228863c884527fceefabc9ad2e375aa0bcbf71f17f75c7d3ff5",

 "blockNumber": 7,

 "status": 0,

 "createName": "test02@app0001202004161020152918451",

 "timeSpanSec": 1587445821,

 "timeSpanNsec": 249139700

 }

}

5.4.3.9 Retrieving block information API

After the data is stored on-chain, the off-BSN system can use this interface on the PCN gateway

to retrieve the block information of the current transaction (body.blockInfo), the status

(body.blockInfo.status), and transaction ID (body.blockInfo.txId). If the status value is 0, it

signifies that the transaction has been successful and a block has been created. The block

information can be queried according to the transaction ID.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/node/getBlockInfo

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 user unique ID userCode String Y

Blockchain-based Service Network User Manual

58

2 DApp unique ID appCode String Y

Body

1 Block number blockNumber Int64 N Can’t be null at the

same time

2 Block HASH blockHash String N Can’t be null at the

same time

3 Transaction Id txId String N Can’t be null at the

same time

Example:

{"header": {"userCode": "USER0001202004151958010871292","appCode":

"app0001202004161020152918451","tId": ""},"mac":

"MEUCIQCrGthrAvNalUsWEdnDxZkNXF4nCpXOxIFQdp1YYhGvugIgKvYql9Ex6RC

cOhqt6coufNPH/QhtKYNeThWJ2rEL+4g=","body": {"blockNumber": 6,"blockHash":

"","txId": ""}}

5. Response parameters

No. Field name Field Type Required Remarks

1 header header Map Y

2 body body Map Y

3 signature value mac String Y

Header

1 Response ID code int Y

0: authentication

successful

-1: authentication

failed

2
Response

Message
msg String N

if code=0 then can

be null

Body

1 Block Hash blockHash String Y

2 Block Number blockNumber Long Y

3
Previous Block

Hash
preBlockHash String Y

4 Block Size blockSize Long Y byte

5

The number of

transactions on

current block

blockTxCount Int Y

6 Transaction detail transactions
[]Transaction

Data
Y Transaction Detail

TransactionData

1 Transaction Id txId String

2
Transaction

Status
Status Int

refer to detailed

transaction status

description in

6.3.13

3
Transaction

Provider
createName String

4
Transaction

timestamp second
timeSpanSec Int64

5

Transaction

timestamp

nonasecond

timeSpanNsec Int64

Example

Blockchain-based Service Network User Manual

59

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEUCIQC8nfFnHw4sEYJmaSTT1xepxMGgomxyJtt0ysyGgPB0AwIgfuuiegdGEbBi/2wmF

Cco39wmik3isLWtvnN9ZmJDTdk=",

 "body": {

 "blockHash": "fc83c306677925efee540b4d7b7ca73e06f144cae34c706f1101d6b395ada2da",

 "blockNumber": 6,

 "preBlockHash":

"93c86551d812229274e144093cd4bd17dacb35bc6a01779930e11f43f886bf34",

 "blockSize": 7020,

 "blockTxCount": 1,

 "transactions": [

 {

 "txId": "a8639f3a796267e048d475b00fe7646a4524f1c20d71880e19708821177b7bdb",

 "status": 0,

 "createName": "test02@app0001202004161020152918451",

 "timeSpanSec": 1587271285,

 "timeSpanNsec": 26436800

 }

]

 }

}

5.4.3.10 Retrieving the newest ledger information API

Use this interface to retrieve the newest ledger information, including block HASH, previous

block HASH, and the height of the current block, etc.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/node/getLedgerInfo

2. Call method: POST

3. Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Example:

{"header":{"userCode":"USER0001202004151958010871292","appCode":"app00012020

04161020152918451","tId":""},"mac":"MEQCID7Z3J2PiRDOx7JasRamBZRTAHXj1X

AG1K/DUkzJEwuiAiBIY5p3H2kArE7OuYLOgEqMHl15Xgj5Voi5zVPGhyU/+w==","b

ody":{}}

5. Response parameters

Blockchain-based Service Network User Manual

60

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 Response ID code int Y

0: authentication

successful

-1: authentication

failed

2
Response

Message
msg String N

if code=0 then can

be null

Body

1 Block Hash blockHash String Y

2 Block Height height Long Y

3
Previous Block

Hash
preBlockHash String Y

Example

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEUCIQC4PhYTBNyt1rSeBeZTdOly42CxILVgK1b/RlieA33G1gIgeodoEa5Ou0X4uW

c/VGp0n6NKByhXlBbo22FME4xQ8aw=",

 "body": {

 "blockHash":

"ab9366cf63881228863c884527fceefabc9ad2e375aa0bcbf71f17f75c7d3ff5",

 "height": 8,

 "preBlockHash":

"fc83c306677925efee540b4d7b7ca73e06f144cae34c706f1101d6b395ada2da"

 }

}

5.4.3.11 Registering chaincode event API

Chaincode event in a DApp can trigger the off-BSN system to process further transactions.

This interface is used to register the chaincode event to be monitored.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/chainCode/event/register

2. Call method: POST

3. Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 user unique ID userCode String Y

Blockchain-based Service Network User Manual

61

2 DApp unique ID appCode String Y

Body

1 ChainCode chainCode String Y

2
Chaincode event

key
eventKey String Y

3
Chaincode event

notification URL
notifyUrl String Y

URL to receive

the monitored

chaincode event

4
Attached additional

parameters
attachArgs String N

Example:

{"header":{"appCode":"CL20191107112252","userCode":"lessing"},"body":{"attachArgs

":"name=TOM&age=20","chainCode":"cc_bsn_test_00","eventKey":"test01","notifyUrl":

"http://192.168.6.128:8080/api/event/notifyUrl"},"mac":"MEUCIQCjzPr4KZVild2Vm5Y

gcunOXTh9mQK2QfWcRnYCk+jOzgIgDW6oHca7/249M43p2ElwiMNbuejdwAnyW5O

wiMqiWCQ="}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 Response ID code int Y
0: successful

-1: failed

2
Response

Message
msg String Y

Body

1 Event ID eventId String Y

Example

{ "header": { "code": 0, "msg": "Event Registration Successful" }, "body":

{ "eventId": "bd3391deedbe44a7ad5b7f80ce59abfa" }, "mac":

"MEQCIENLpj2R9mRL100vcMXs0X5rwfSjB/U7kMg+76GjEPNJAiBlUo/Eyj49uXTPrz

RW0m4rJ0NQIkZnDMPbyalxojXwrA=="}

5.4.3.12 Registering block event API

Block event in a DApp can trigger the off-BSN system to process further transactions. This

interface is used to register the block event to be monitored.

6. Interface address:

https://PCNGatewayAddress/api/fabric/v1/chainCode/event/blockRegister

7. Call method: POST

8. Signature algorithm: required and refer to Section 5.4.3.1

9. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

Blockchain-based Service Network User Manual

62

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Body

1
Chaincode event

notification URL
notifyUrl String Y

URL to receive

the monitored

block event

2
Attached additional

parameters
attachArgs String N

Example:

{"header":{"userCode":"USER0001202007101641243516163","appCode":"app00

01202101191411238426266","tId":""},"mac":"MEUCIQClsjKy/ee1qaYrItzCO1b

Mfjs0g0kPu8+YOCjbk3rPRAIgSfeyYvfeoh8QciZPG4fZQepaiyh7PmmWjYzFSq

ylT/c=","body":{"chainCode":"","eventKey":"","notifyUrl":"http://192.168.6.78:5

8011/v1/fabric/test","attachArgs":"a=1"}}

10. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 Response ID code int Y
0: successful

-1: failed

2
Response

message
msg String Y

Body

1 Event ID eventId String Y

Example

{

 "header": {

 "code": 0,

 "msg": "success"

 },

 "mac":

"MEUCIQC6PKsSqfkQGLrqi2vMpZzBP5beLhyP+fXVr8S5aqhaagIgaEtAnsuiub

ibYoYZzQ/8aGYErzm5rtU8Oj952OuHgCo=",

 "body": {

 "eventId": "002f0e1f0b0f4331ab541461547a38d6"

 }

}

5.4.3.13 Chaincode and block event query API

Blockchain-based Service Network User Manual

63

Use this API to query the list of monitored chaincode and block events that have been

registered.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/chainCode/event/query

2. Call method: POST

3. Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Example:

{"header":{"appCode":"CL20191107112252","userCode":"lessing"},"body":{},"mac":"M

EQCIAnJxvuKVe0u/bG0VYCjM3g3ctxTYIWkejYp462okNlcAiBcOTGvAkF7xErL2w1

PiwgfFjIu3Sszgyfzym/pEwRGxA=="}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body []body Y Event List

3 Signature Value mac String Y

Header

1 Response ID code int Y

0: Query

successful

-1: Query

failed

2 Response Message msg String Y

body

1 Event ID eventId String Y

2 Chaincode Event key eventKey String N
Null if it’s a

block event

3
Chaincode Event

Notification URL
notifyUrl String Y

4
Attached additional

parameters
attachArgs String N

5 Creation Time createTime String Y

6 PCN ID orgCode String Y

7 user unique ID userCode String Y

8 DApp unique code appCode String Y

9 Chaincode ID chainCode String N
Null if it’s a

block event

10 Event type eventType String N

Returns

“block” if

it’s a block

event; Null if

it’s

chaincode

Blockchain-based Service Network User Manual

64

event

Example

{ "header": { "code": 0, "msg": "Query Event Successful" }, "body":

[{ "eventKey": "test001", "notifyUrl":

"http://192.168.6.128:8080/api/event/notifyUrl", "attachArgs": "a=123\u0026b=456",

"eventId": "945ee631d26140118963ad3104c81713", "createTime": "2019-11-18

14:22:59", "orgCode": "ORG1571365934172", "userCode": "lessing",

"appCode": "CL20191107112252", "chainCode": "cc_bsn_test_00" },

{ "eventKey": "test002", "notifyUrl":

"http://192.168.6.128:8080/api/event/notifyUrl", "attachArgs": "hahahhahhahahahah",

"eventId": "346617a493d84c6d8512b8dddad87811", "createTime": "2019-11-18

14:29:28", "orgCode": "ORG1571365934172", "userCode": "lessing",

"appCode": "CL20191107112252", "chainCode": "cc_bsn_test_00" },

{ "eventKey": "test01", "notifyUrl":

"http://192.168.6.128:8080/api/event/notifyUrl", "attachArgs":

"name=Zhangsan\u0026age=20", "eventId": "bd3391deedbe44a7ad5b7f80ce59abfa",

"createTime": "2019-11-19 10:52:15", "orgCode": "ORG1571365934172",

"userCode": "lessing", "appCode": "CL20191107112252", "chainCode":

"cc_bsn_test_00" }], "mac":

"MEQCIEYXFMa8dfBrjy/s9H5JAoFIrjROJBiw+7/daELUbF5eAiA7a6HvqqbOpv6vlkun

HGxCB1o5DoeuJFD0FM6kLoU34Q=="}

5.4.3.14 Remove chaincode and block event API

This interface is used to remove a chaincode event’s registration from the event list.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/chainCode/event/remove

2. Call method: POST

3. Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Body

1 Event ID eventId String Y

Example:

{"header":{"appCode":"CL20191107112252","userCode":"lessing"},"body":{"eventId":"

bd3391deedbe44a7ad5b7f80ce59abfa"},"mac":"MEQCIE3/CLG5LxZZN7En7LZvzthajw

xHzpvDduXSsw4Tb1JFAiAXGJ4WVtyCKbtCasQGofCkge8NOgZDNPgJIdTCtCi2SQ=

="}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

Blockchain-based Service Network User Manual

65

3 Signature Value mac String Y

header

1 Response ID code int Y

0: remove

successful

-1: remove failed

2
Response

Message
msg String Y

Example

{ "header": { "code": 0, "msg": "Remove Event Successful" }, "body": null, "mac":

"MEUCIQCaTFLliY7pPjkwcmSsLXOth7k9bQj9Sblq+1nMVjkFAAIgUsizFO+f1+dxU3/

hPxjf/+na4qG6aQFftJIWGtMhlVI="}

5.4.3.15 Chaincode and block event notification message API

This interface is implemented on the off-BSN system side. When the PCN gateway receives

the notification of a triggered event, it uses this interface to notify the off-BSN system about

the execution result.

After receiving the notification successfully, the off-BSN system returns a string containing

“success”, otherwise, the gateway will send the notification again at 3, 12, 27, and 48 seconds

respectively, for a total of five times.

1. Call method: POST

2. Signature algorithm: required and refer to Section 5.4.3.1

3. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

body

1 Chaincode ID chainCode String N

Null when the

block event

notification

2 PCN ID orgCode String Y

3 Registered Event key eventKey String N

4 Registered Event ID eventId String Y

5
Registered Event

parameters
attachArgs String N

Additional

parameters

entered during

registration

6 Monitored event key eventName String N

The event name

in the chaincode,

null when the

block event

notification

7
Current Chaincode

transaction Id
txId String N

Null when the

block event

notification

Blockchain-based Service Network User Manual

66

8
Monitored event

value
payload String N

9 Current Block Height blockNumber Long Y

10
Response random

string
nonceStr String Y

Off-BSN system

uses this value to

judge if the

notification is

already received.

This string

remains the same

at the repeated

notifications.

11 Previous hash previousHash String N

Null when

chaincode event

notification

Example:

Chaincode event nofitication

{"header":{"userCode":"lessing","appCode":"CL20191107112252"},"body":{"cha

inCode":"cc_bsn_test_00","orgCode":"ORG1571365934172","eventKey":"test:\\S

{32}","eventId":"2964a0f60b3e460f834618b3664af2da","attachArgs":"abc=12321

1","eventName":"test:12345678123456781234567812345678","txId":"32fc10568

1820fa556b8a460efc1e43a47daa864b959ea1753abb4640f2dce49","payload":"","b

lockNumber":74,"nonceStr":"522c8061b5e84837bad72ca08c6a353f"},"mac":"ME

QCIDU4tROyjLtvD1b8TTbWWAlCPuUbmdPAEUXwRRgVn7kIAiA58je5u/7x

DuRPcgeUWL3nB9mouUGQ6dGKJMmD7Jm08g=="}

Block event notification

{"header":{"userCode":"USER0001202007101641243516163","appCode":"app00

01202101191411238426266"},"body":{"orgCode":"ORG2020041114171692360"

,"eventId":"8746bb9a1e854c9f8b3710f5a63f7c59","attachArgs":"a=1","previousH

ash":"022281f6089e3684501251775166b6b0afd18a176ec98a835cb5d09aff0d4950

","blockNumber":12,"nonceStr":"79a7baa26c854caeb2e2e7abc0b7f07e"},"mac":"

MEUCIQDiZrwf8fKG/3fuaVrsfTN3BKmLx+qnnEuuSaHfvIBbMQIgS+1qHKXe

VR24WXwOGu3Nze/tLLziQ0LkjXaueYu0ctM="}

5.4.3.16 Transaction status description

Under both Key Trust Mode and Public Key Upload Mode, the description of the returned

transaction status when the off-BSN system invokes the DApp chaincodes via PCN gateway

APIs are shown as follows:

No. Status Code Remarks

 0 Successful

 -1 Block creation time out

 1 Submitted data empty

 2 Unusual response

 3 Error in the submitted information

 4 Error in the creator’s signature

 5 Invalid “endorser” transaction

Blockchain-based Service Network User Manual

67

 6 Invalid transaction settings

 7 Unsupported transaction response

 8 Error in the transaction ID

 9 Duplicate transaction ID

 10 Failed endorsement

 13 Unknown transaction type

 14 Cannot locate target chaincode

 17 Expired chaincode

 18 Conflict in chaincode version

 254 Invalid transaction

 255 Invalid transaction for other reasons

5.4.4 PCN gateway FISCO API

A PCN gateway is deployed on each public city node (PCN) to receive off-BSN system

requests signed and verified by DApp access keys, then used to route the requests to the

corresponding FISCO BCOS-based DApp smart contracts. Invoking the PCN gateway is

realized by sending HTTP requests to each PCN gateway service. The gateway is responsible

for verifying user and application identities, and then uses these identities and smart contract

functions to process smart contract parameters then sends the smart contract transaction results

back to the off-BSN systems.

5.4.4.1 DApp Access Signature Algorithm

Whenever an off-BSN system sends requests to the PCN gateway, the HTTP request message

should be signed with the DApp participant’s DApp access private key. When the PCN

gateway receives the message with the digital signature, it will verify the authentication and

message integrity with the corresponding hosted or uploaded DApp access public key. The

gateway will only process the request message further after the verification is passed.

1. Assemble signature string

Convert the request parameters into a joined string according to the order of the parameter

table, of which, the call parameter prioritises joining UserCode and AppCode of the Header

and the response parameter prioritises joining code and msg. Then join the parameters in the

Body according to the order of the parameter tables in the definition of APIs.

2. Different type conversion formats

Type Rule Example Result

String No conversion abc abc

Int/int64/lo

ng
Decimal conversion -12 -12

Float
Decimal conversion; see notes

for values after decimal point
1.23 1.23

Bool Convert to “true” or “false” true true

Array
Join according to parameter

sequence and type
{“abc”,”xyz”} abcxyz

Map[key]va

lue

Join key and value according to

parameter sequence
{“a”:1,”b”:2} a1b2

Object

Convert the attributes in the

object one by one according to

the document in the above-

described format

{“name”:”abc”,”sec

ret”:”123456”}
abc123456

Blockchain-based Service Network User Manual

68

3. Signature rules

1. FISCO BCOS framework DApp using ECDSA (secp256k1) secret key algorithm

• Getting the Hash value: The converted string to be signed is required to be computed

with SHA256 algorithm with UTF-8 encoding.

• Sign the Hash value: The hash value and private key should be encrypted with ECDSA

(secp256k1) algorithm. In the processing of some programming languages (C#, Java),

if signed with SHA256WithECDSA, which includes hash value computation,

therefore, the first step is not necessary.

• Encoding the signature result to Base64.

2. FISCO BCOS framework DApp using SM secret key algorithm

• Getting the Hash value: The converted string to be signed is required to be computed

with SM3 algorithm with UTF-8 encoding.

• Sign the Hash value: The hash value and private key should be encrypted with SM2

algorithm.

• Encoding the signature result to Base64.

4. Example

Parameters:

{"header":{"userCode":"user01","appCode":"app01"},"mac":"","body":{“userId”:”abc”,”list

”:[“abc”,”xyz”]}}

Result: user01app01abcabcxyz

5.4.4.2 Key and Certificate Modes

1. Key Trust Mode

As described in the chapter 5, DApp participants require two sets of key pairs to access the

DApp: DApp access key pair and user transaction key pair. Under the key trust mode, the pairs

are generated and hosted by BSN. The participants only need to download the private key

(DApp access key) from the BSN portal.

DApp Access Key Pair: After the participant has successfully joined the DApp, BSN will

generate one key pair (private and public keys) that corresponds to the DApp’s framework

algorithms under the Key Trust Mode. The participant can download the private key from “My

Certificates” section of the BSN global portal and use it to sign the request message sent to the

PCN gateway. The gateway will use the hosted public key from the generated key pair to

validate the signature.

User Transaction Key Pair: This is the identity of a participant to invoke the chaincodes. Under

the Key Trust Mode, after successfully joining the DApp, a participant’s user transaction key

pair will be created automatically by BSN by default. The participant’s off-BSN system can

use the participant’s UserCode to invoke the certificate generated by the key pair. If the

participant’s off-BSN system has multiple sub-users, the off-BSN system can invoke the

gateway’s “User Registration API” to register the sub-users and generate a separated user

transaction key pair for each sub-user. The sub-users can use their own UserCode to connect

to the DApp to execute smart contract transactions.

Blockchain-based Service Network User Manual

69

Transaction process:

2. Public Key Upload Mode

As described in chapter 5, DApp participants require two sets of key pairs to fully access the

DApp: DApp access key pair and user transaction key pair. With public-key upload mode, the

key pairs are generated and stored locally by the participants. The participants only need to

upload the public keys to BSN via the BSN portal or gateway APIs.

⚫ DApp Access Key Pair: The DApp participant must generate the DApp access key pair

locally according to the DApp framework algorithm after successfully joining the DApp.

The participant stores the private key locally and uploads the public key to BSN via the

BSN global portal. The participant’s off-BSN system uses the private key to sign the

transaction messages when invoking the PCN gateway. The PCN gateway will use the

public key uploaded by the participant to verify the signature and validate the legality of

the transaction.

⚫ User Transaction Key Pair: This is the identity of a participant to invoke the chaincodes.

Under the Key Trust Mode, the participant must generate the user transaction key pair

locally and use the public key to generate the “public key registration application”, then

from the participant’s off-BSN system to submit the registration application to BSN by

invoking the “Public Key Upload Mode user certification registration” API on the PCN

gateway to receive the public key certificate. If the off-BSN system has sub-users, it should

first invoke the “User Registration” API to register the sub-users before sending their public

key registration applications.

Transaction process:

Off-BSN System PCN Gateway

1. Invoking "User Registration" API

1.1 Return User information

2. Invoking "Key Trust Mode Invoking
chaincode" API

2.1 Return transaction result

3. Invoking "Retrieving Transaction
information" API

3.1 Return transaction result

Blockchain-based Service Network User Manual

70

5.4.4.3 Retrieving DApp information API

Invoke this interface to get certain basic DApp information; this interface can be used with

Public Key Upload Mode transactions.

1. Interface address:

https://PCNgatewayAddress/api/app/getAppInfo

2. Call Method: POST

3. Signature Algorithm: Not Required

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Yes

2 Body body Map No

3 Signature value mac String Yes

Header

1 User unique ID userCode String Yes

2 DApp unique ID appCode String Yes

Body

Example:

{"header":{"userCode":"USER0001202004151958010871292","appCode":"app0001202

004161020152918451","tId":""},"mac": "","body":{}}

Off-BSN
System

PCN Gateway

1. Invoking "user registration" API

1.1 return user information

4. Invoking "Public Key Upload Mode
Invoking Chaincode" API

4.1 Return transaction result

5. Invoking "Retrieving Transaction
information" API

5.1 Return transaction info

2. Invoking "User Certificate
registration" API

2.1 Return certificate info

3. Assemble
Transaction
Parameters

https://pcngatewayaddress/api/app/getAppInfo

Blockchain-based Service Network User Manual

71

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature value mac String Y

Header

1 Response ID code int Y
0: successful

-1: failed

2 Response Message msg String Y

Body

1 DApp name appName String Y

2 DApp type appType String Y

3
DApp encryption

key type
caType Int Y

1: Key Trust Mode

2: Public Key

Upload Mode

4
DApp algorithm

Type

algorithmTy

pe
Int Y

1: SM2

2:

ECDSA(secp256r1)

5 City MSPID mspId String Y

6 DApp chain name channelId String Y

Fabric
corresponding
channelId, fisco
corresponding
groupId

Example:

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEUCIQDE9zv0E/w4V/ILG6wUCFP08a7NDCAtX/IoZOcCyY4gIQIgUTYWsFTA1

KE88gE6452jKnnVBrhznGVOV2HPMCbNh8A=",

 "body": {

 "appName": "sdktest",

 "appType": "fabric",

 "caType": 2,

 "algorithmType": 2,

 "mspId": "OrgbNodeMSP",

 "channelId": "app0001202004161020152918451"

 }

}

5.4.4.4 User Registration API

After a participant has successfully joined in a FISCO BCOS (FISCO) DApp, his/her off-BSN

system can invoke this interface to generate the user account and user address to execute smart

contract transactions.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/user/register

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

Blockchain-based Service Network User Manual

72

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

body

1 user name userId String Y Registered

user name

Example:

{

"header":{"appCode":"CL1881038873220190902114314","userCode":"newuser"},

"body":

{

“userId”:”abc”

},

"mac":"MEQCIBRhaM2szckWl9N9qcqnaYXOXGQw7SfII9DlRvxcI3YVAiBt4XeNs+

EUjhBNSr3IjLRPZucsuGHxfjt9RiaNIQS8cA=="}

signature value:

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3
Signature

Value
mac String Y

header

1 Response ID code int Y

0: authentication

successful

-1: authentication

failed

2
Response

Message
msg String N

if code=0 then can

be null

body

1
User

information
data []string N

If code is not 0,

then leave blank

data

1 User ID userId String Y

2 User Address userAddress String Y

Example

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEQCIEI5VKMyJUXls2Hf8TLoPXjZLT4/L2wyXoddgTnZdqRsAiBxEBMeCOZ8M97

OCRUAMZNMcL974vhzjOS/tk8/wbgbsA==",

 "body": {

 "userId": "100003",

 "userAddress": "0x14647a48303b5e1c77934583883ebc327ba3b297"

 }

Blockchain-based Service Network User Manual

73

}

5.4.4.5 Key Trust Mode Invoking Smart Contract API

For the key trust mode FISCO DApps, when the off-BSN system invokes the smart contract

functions via PCN gateway, it is required to include the call parameters in the request. The

gateway will return the transaction result from the smart contract.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/reqChainCode

Note: After a participant has successfully joined in a FISCO DApp service, the participant can

view and download the DApp’s configuration parameters which are used for off-BSN systems

to connect to this DApp’s smart contracts, including the PCN gateway address and Dapp access

keys, as shown below:

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Body

1 User ID userId String Y
Registered user ID

via 7.3.1 API

2
Smart Contract

Name
contractName String Y

3 Function Name funcName String Y

4
Function

Parameters
funcParam string N

convert array type

to json string

format

Blockchain-based Service Network User Manual

74

Example:

{"header":{"appCode":"cl0006202003181926573677572","userCode":"USER00062020

03181951281835816"},"body":{"contractName":"HelloWorld","userId":"100003","func

Name":"set","funcParam":[\"abc\"]},"mac":"MEUCIQDTFe2Gerdf7YJrG1a1Yt99M0Z

Q3T1lGpsXdNmFV7WuTgIgSkZ19abUhAJbMrJMBoD8N7f26xhpQRuR4vNAfY7EE

bs="}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 Response ID code int Y

0: authentication

successful

-1: authentication

failed

2
Response

Message
msg String N

if code=0 then can be

null

Body

1 Invoke Type constant Bool N

2
Query

information
queryInfo String N

If Constant is true, this

field has value.

3
Transaction

hash
txId string N

If Constant is false,

this field has value and

is valid.

4 Block HASH blockHash String N

If Constant is false,

this field has value and

is valid.

5 Block Number blockNumber Int N

If Constant is false,

this field has value and

is valid.

6 Gas Used gasUsed Int N

If Constant is false,

this field has value and

is valid.

7
Transaction

Status
status String N

If Constant is false,

this field has value and

is valid. 0x0 means

transaction successful,

status value refer to

transaction receipt

status in 7.3.9

8 From account from String N

If Constant is false,

this field has value and

is valid.

9 To account To String N

If Constant is false,

this field has value and

is valid.

10 Input Input String N

If Constant is false,

this field has value and

is valid.

11 Ouput output String N

If Constant is false,

this field has value and

is valid.

Blockchain-based Service Network User Manual

75

Example

5.4.4.6 Public Key Upload Mode Invoking Smart Contract API

When the off-BSN system invokes the node gateway, it should follow the API descriptions to

add the corresponding parameters. After invoking the node gateway, the node gateway returns

the execution result of the smart contract. In the transaction of Public Key Upload mode, the

private key of the transaction on the chain is generated and saved by the user. Then the client

performs the assembly and signature of the data locally. The signed data is uploaded to the

node gateway, which forwards the data to the corresponding blockchain node to initiate the

transaction request. Data assembly in this pattern requires information such as the contract

ABI, which is compiled when developing the contract, and the contract address, which is

available on the application details page. In the SDK of the gateway, the assembly method of

the data on the link has been implemented, which can be directly called.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/trans

Note: After a participant has successfully joined in a FISCO DApp service, the participant can

view and download the DApp’s configuration parameters which are used for off-BSN systems

to connect to this DApp’s smart contracts, including the PCN gateway address and Dapp access

keys, as shown below:

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Body

1 Smart Contract contractName String Y

Blockchain-based Service Network User Manual

76

Name

2
Transaction

Data
transData String Y

3 Contract address contractAddress String N

4 Contract ABI contractAbi String N

Example:

{"header":{"userCode":"USER0001202006042321579692440","appCode":"app0001202

006042323057101002","tId":""},"mac":"MEUCIQCrjIeRVSt1uwFFGkr37bVM8pF0Jg

AWb40mKEBc5HbpjgIgEzXRIgG+Q7obwuD2MY4EHo9sIsI1W71M+aQKOfAN3wU

=","body":{"contractName":"BsnBaseContractk1","transData":"0xf9016fa008d8ebcb4b

1f8205fd7883aa3ce9b9c844424070e55a3af6a5da5d7ee97d287385051f4d5c0083419ce0

7794866aefc204b8f8fdc3e45b908fd43d76667d7f7680b8e4ebf3b24f0000000000000000

006000000000000000000000000

005000000000000000000000000000000

00000000000000000000000000000000a00000000000000000000000000000000000000

00000000000000000000000000573303630340000000000000000000000000000000000

000

0000000000002616100

000000018187801ba0324efc9e17f1d31d95535c5103083560560f836931945d03fb69acb

6fd2046b5a05fa6f574f83b3b753c9fe40649a08c2a497af1cd804e08fed2b153af20267f23"

,

"contractAddress":"0xe2d0d414d436d8be9d52e2f40e6dd24a63faa638","contractAbi":"

Contract ABI"}}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 Response ID code int Y

0: authentication

successful

-1: authentication

failed

2
Response

Message
msg String N

if code=0 then can be

null

Body

1 Invoke Type constant Bool N

2
Query

information
queryInfo String N

If Constant is true,

this field has value.

3
Transaction

hash
txId string N

If Constant is false,

this field has value

and is valid.

4 Block HASH blockHash String N

If Constant is false,

this field has value

and is valid.

5 Block Number blockNumber Int N

If Constant is false,

this field has value

and is valid.

6 Gas Used gasUsed Int N

If Constant is false,

this field has value

and is valid.

7
Transaction

Status
status String N

If Constant is false,

this field has value

Blockchain-based Service Network User Manual

77

and is valid. 0x0

means transaction

successful, status

value refers to

transaction receipt

status in 7.3.9

8 From account from String N

If Constant is false,

this field has value

and is valid.

9 To account To String N

If Constant is false,

this field has value

and is valid.

10 Input Input String N

If Constant is false,

this field has value

and is valid.

11 Output output String N

If Constant is false,

this field has value

and is valid.

Example

5.4.4.7 Retrieving Transaction Receipt API

After the smart contract executes one transaction, this interface can be used to retrieve the

transaction receipt information according to the transaction HASH value.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/getTxReceiptByTxHash

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

body

2 Transaction Hash txHash string Y

Example:
{"header":{"appCode":"cl0006202003181926573677572","userCode":"USER0006202003181951

281835816"},"body":{"txHash":"0x755f3e7833778f674e1b025f513f05722ba7248be43a3c9168b8

80847814021a"},"mac":"MEYCIQCe6sI9zqspsy1bS6Ka9Q8O+pE7TEDWdsWj4UBSg6FM7AIh

AJrud/EoxnURQcDc47iwTdh7OdxJEJPE+raK9UaHjNaJ"}

signature value:

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

Blockchain-based Service Network User Manual

78

2 Body body Map Y

3 Signature Value mac String Y

header

1 Response ID code int Y

0: authentication

successful

-1: authentication

failed

2
Response

Message
msg String N

if code=0 then can

be null

Body

1
Transaction

Receipt Info
txId string N

If code is not 0,

then leave blank

 Block HASH blockHash

 Block Number blockNumber

 Gas Used gasUsed

 From account from

 To account to

Smart Contract

Address
contractAddress

Example
{

 "header": {

 "code": 0,

 "msg": "Transaction successful"

 },

 "mac":

"MEUCIQCUlhnvH9a4HN/YITf4OWgTuHmmz6qMEO89I4effHdcIwIgStdeb/dVplhn3/FoCjeSc

VRyiEUhpkbze9bVm1gaXqs=",

 "body": {

 "blockHash":

"0x199eca276b60473dd65f8b36641684456694b419d89ef41b4953a9cdac848305",

 "gasUsed": 2154887,

 "blockNumber": 1,

 "txId": "0x8ee0c68e222742b5b70878265d3fdbd3a8e0d549da42a298a4ae872ca4fbfd89",

 "contractAddress": "0x20453db36c492fa49da9fab1b80db7fa5f46b01e",

 "from": "0x08ac3132a6c7e6ca5a7fbaf0521bb8b6f370ed35",

 "to": "0x00"

 }

}

5.4.4.8 Retrieving Transaction information API

After the smart contract executes one transaction, this interface can be used to retrieve the

transaction detailed information according to the transaction HASH value.

1. Interface address:

 https://PCNGatewayAddress/api/fiscobcos/v1/node/getTxinfoByTxHash

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

Blockchain-based Service Network User Manual

79

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Body

1 Transaction HASH txHash string Y

Example:
{"header":{"appCode":"cl0006202003181926573677572","userCode":"USER0006202003181951

281835816"},"body":{"txHash":"0x755f3e7833778f674e1b025f513f05722ba7248be43a3c9168b8

80847814021a"},"mac":"MEUCIQDDQudQBvHkI5tIpeTDGkQA+LPRMTA2k9u7hCZAYVobv

QIgNseUfaVw8d/LxooPPWyQSo2O4EUt6wmEISgtnTcUO7k="}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 Response ID code int Y

0: authentication

successful

-1: authentication

failed

2
Response

Message
msg String N

if code=0 then can be

null

Body

Transaction

HASH
txId String

 Block HASH blockHash String

 Block Number blockNumber Int

 Gas Used gasUserd Int

 From account from String

 To account to String

 value Int

 input String

Example
{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEQCIBMqntmqQqZXkBbrLhmXEcuOqTG4YWvlfGJmebzEDbzcAiAKKHut9MBShqpSAEo8

ts2MEQCIBMqntmqQqZXkBbrLhmXEcuOqTG4YWvlfGJmebzEDbzcAiAKKHut9MBShqpSAE

o8ts2+OBIRmEEbedjihix5FZZvrw==",

 "body": {

 "blockHash":

"0x199eca276b60473dd65f8b36641684456694b419d89ef41b4953a9cdac848305",

Blockchain-based Service Network User Manual

80

 "input":

"0x60806040523480156200001157600080fd5b506110016000806101000a81548173fffffffffffffffff

fffffffffffffffffffffff021916908373ff16021790555060008090549061

01000a900473ff1673ff1663c92a780

16040805190810160405280600681526020017f745f6261736500000000000000000000000000000

000000000000000000000008152506040518263ffffffff167c0100000000000000000000000000000

0000000000000000000000000000281526004016200010191906200024a565b60206040518083038

1600087803b1580156200011c57600080fd5b505af115801562000131573d6000803e3d6000fd5b50

5050506040513d601f19601f8201168201806040525062000157919081019062000174565b506200

02f4565b60006200016c8251620002a3565b905092915050565b6000602082840312156200018757

600080fd5b600062000197848285016200015e565b91505092915050565b6000620001ad82620002

98565b808452620001c3816020860160208601620002ad565b620001ce81620002e3565b60208501

0191505092915050565b6000601382527f626173655f6b65792c626173655f76616c7565000000000

000000000000000006020830152604082019050919050565b6000600782527f626173655f6964000

0006020830152604082019050919050565b6

0006060820190508181036000830152620002668184620001a0565b9050818103",

 "gasUsed": 100000000,

 "blockNumber": 1,

 "txId": "0x8ee0c68e222742b5b70878265d3fdbd3a8e0d549da42a298a4ae872ca4fbfd89",

 "from": "0x08ac3132a6c7e6ca5a7fbaf0521bb8b6f370ed35",

 "to": "0x00",

 "value": 0

 }

}

5.4.4.9 Retrieving Block Information API

Corresponding block information can be queried according to block number or the block

HASH. The block number and block HASH cannot simultaneously be blank. When neither is

blank, query the block number first to get the block information.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/getBlockInfo

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Body

1 Block Height blockNumber string N

When null,

blockHash cannot

be null

2 Block Hash blockHash String N
When null,

blockNumber

https://pcngatewayaddress/api/fiscobcos/v1/node/getBlockInfo

Blockchain-based Service Network User Manual

81

cannot be null

Example:

{

"header":{"appCode":"CL1881038873220190902114314","userCode":"newuser"},

"body":

{

"blockNumber":22,

"blockHash":"0xf27ff42d4be65329a1e7b11365e190086d92f9836168d0379e92642786db7

ade"

},

"mac":"MEQCIBRhaM2szckWl9N9qcqnaYXOXGQw7SfII9DlRvxcI3YVAiBt4XeNs+E

UjhBNSr3IjLRPZucsuGHxfjt9RiaNIQS8cA=="}

signature value:

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 Response ID code int Y

0: authentication

successful

-1: authentication

failed

2
Response

Message
msg String N

if code=0 then

can be null

Body

 Block HASH blockHash String Y

 Block Number blockNumber Int Y

Parent Block

HASH

parentBlockHa

sh
String Y

 Block Size blockSize Int Y

 Block Time blockTime Int Y

Timestamp in

millisecond

format

 author String Y

Transaction

Information
transactions

[]Transaction

Data
Y

TransactionData

 Transaction Id txId String Y

 Block HASH blockHash String Y

 Block Number blockNumber Int Y

 Gas Used gasUsed Int Y

 from String Y

 to String Y

 value Int Y

 input String Y

Example

{

 "header": {

 "code": 0,

 "msg": "Transaction successful"

 },

 "mac":

Blockchain-based Service Network User Manual

82

"MEQCIHX8SuEn/sDiPscd5li3X1GdseyggAyC2o9L92FjhzrfAiBLyFW/rguLkqz/Lz62Vt

X3m7Y1nHqcFqcNdM7Wq0wGLQ==",

 "body": {

 "blockHash":

"0x199eca276b60473dd65f8b36641684456694b419d89ef41b4953a9cdac848305",

 "blockNumber": 1,

 "parentBlockHash":

"0xa6886f12ee91470e35546432413ed372615f8d4c23fa82e8381b3e5b31219d4c",

 "blockSize": 0,

 "blockTime": 1587125168039,

 "transactions": [

 {

 "txId":

"0x8ee0c68e222742b5b70878265d3fdbd3a8e0d549da42a298a4ae872ca4fbfd89",

 "blockHash":

"0x199eca276b60473dd65f8b36641684456694b419d89ef41b4953a9cdac848305",

 "blockNumber": 1,

 "gasUsed": 100000000,

 "from": "0x08ac3132a6c7e6ca5a7fbaf0521bb8b6f370ed35",

 "to": "",

 "value": 0,

 "input":

"0x60806040523480156200001157600080fd5b506110016000806101000a81548173ffffffff

ffffffffffffffffffffffffffffffff021916908373ff16021790555060

00809054906101000a900473ff1673fffffffffffffffffffffffffffff

fffffffffff1663c92a78016040805190810160405280600681526020017f745f6261736500000

0008152506040518263ffffffff167c0

10002815260040162000

10191906200024a565b602060405180830381600087803b1580156200011c57600080fd5b5

05af115801562000131573d6000803e3d6000fd5b505050506040513d601f19601f82011682

01806040525062000157919081019062000174565b50620002f4565b60006200016c825162

0002a3565b905092915050565b6000602082840312156200018757600080fd5b6000620001

97848285016200015e565b91505092915050565b6000620001ad8262000298565b80845262

0001c3816020860160208601620002ad565b620001ce81620002e3565b6020850101915050

92915050565b6000601382527f626173655f6b65792c626173655f76616c756500000000000

0000000000000006020830152604082019050919050565b6000600782527f626173655f696

40060208301526040820190509

19050565b60006060820190508181036000830152620002668184620001a0565b905081810

360208301526200027b8162000213565b90508181036040830152000000"

 }

]

 }

}

5.4.4.10 Retrieving DApp Block Height API

This interface is used to retrieve block height in a DApp.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/getBlockHeight

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

https://pcngatewayaddress/api/fiscobcos/v1/node/getBlockHeight

Blockchain-based Service Network User Manual

83

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

body

Example:
{"header":{"appCode":"cl0006202003181926573677572","userCode":"USER000620200318195

1281835816"},"body":{},"mac":"MEQCIHb2o7hb0apDukOQBXkZftETsizDBaftnHxO9A9ux5

EtAiABuiFrVYPWT5FiU+Wd9HpXF/AJh0Yh2SXtL6h98m4eZw=="}

signature value:

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 Response ID code int Y

0: authentication

successful

-1: authentication

failed

2
Response

message
msg String N

if code=0 then

can be null

Body

1 Block Height data string N
If code not 0, then

leave blank

Example

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEQCICtCOdv4ZL72M3WoA9nAei2P0/PpKjlgI0Y5qeuzg61uAiA9D3TcB/+b2RMu

NwVq+X0vgiglHfM5NBhoTJPR0gCPMA==",

 "body": {

 "data": "4"

 }

}

5.4.4.11 Retrieving Total Count of DApp Transactions API

This interface is used to retrieve the total count of transactions in a DApp.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/getTxCount

https://pcngatewayaddress/api/fiscobcos/v1/node/getTxCount

Blockchain-based Service Network User Manual

84

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

body

Example:

{"header":{"appCode":"cl0006202003181926573677572","userCode":"USER000620200

3181951281835816"},"body":{},"mac":"MEQCIBRhaM2szckWl9N9qcqnaYXOXGQw7

SfII9DlRvxcI3YVAiBt4XeNs+EUjhBNSr3IjLRPZucsuGHxfjt9RiaNIQS8cA=="}

signature value:

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 Response ID code int Y

0: authentication

successful

-1: authentication

failed

2
Response

Message
msg String N

if code=0 then can

be null

Body

1
Transaction

Information
data string N

If code not 0, then

leave blank

Example

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEQCIGgXINn3B9d/hC/ow0IJvi5eKDj59QbZRFdrCqcUeNCgAiApI4jkwhTY33qev1

RwsJ3veDBKXokvIiSe3ck7SKlxmg==",

 "body": {

 "data":

"{\"txSum\":5,\"blockNumber\":5,\"txSumRaw\":\"0x5\",\"blockNumberRaw\":\"0x5\"}"

 }

}

5.4.4.12 Retrieving Total Count of Block Transactions API

This interface is used to retrieve the total count of transactions inside a block according the

block number in a FISCO DApp. The block number cannot be empty.

Blockchain-based Service Network User Manual

85

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/getTxCountByBlockNumber

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

body

2 Block number blockNumber string Y

Example:

{

"header":{"appCode":"CL1881038873220190902114314","userCode":"newuser"},

"body":

{

"grouId":1,

"blockNumber":22,

},

"mac":"MEQCIBRhaM2szckWl9N9qcqnaYXOXGQw7SfII9DlRvxcI3YVAiBt4XeNs+EU

jhBNSr3IjLRPZucsuGHxfjt9RiaNIQS8cA=="}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 Response ID code int Y

0: authentication

successful

-1: authentication failed

2
Response

message
msg String N

if code=0 then can be

null

Body

1

Block total

count of

transactions info

data string N
If code not 0, then leave

blank

data

Example

{

 "header": {

 "code": 0,

 "msg": "Transaction Successful"

 },

 "mac":

"MEUCIQCMFbVhfH9X8pJ1mNI3YpzKIBcXCpfmf2AniF/42ak9EwIgTWDEF+xW5l39

ZDUnDSSSc8Zv8J1glEf9izp16eW/Rn4=",

Blockchain-based Service Network User Manual

86

 "body": {

 "data": "1"

 }

}

5.4.4.13 Registering Smart Contract Event API

Smart contract event in a DApp can trigger the off-BSN system to process further transactions.

This interface is used to register the smart contract event to be monitored.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/event/register

2. Call method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Body

1 Event Type eventType String Y

1.Block

generation event

2.Contract event

2 Contract address contractAddress String N

EventType is 1 then

can be null;

EventType is 2 then

EventType and

contract Name

cannot be null at the

same time

3 Contract name contractName String N

EventType is 1 then

can be null;

EventType is 2 then

EventType and

contractName

cannot be null at the

same time
4 Notification URL notifyUrl String Y
5 Attached parameters attachArgs String N

Example:

{"header":{"userCode":"USER0001202006042321579692440","appCode":"app000120200604232

3057101002","tId":""},"mac":"MEUCIQCMP1ToZS5e8S94kYZ/8y5XfeyjRyUrPFpeIQMES3SGp

QIgO8b6O8Kk/qpNTo1vbNTwyAYNaw6HBi9OkAH8Rp23j8s=","body":{"eventType":1,"contra

ctAddress":"0x866aefc204b8f8fdc3e45b908fd43d76667d7f76","contractName":"BsnBaseContract

k1","notifyUrl":"http://127.0.0.1:18080","attachArgs":"abc=123"}}

5. Response parameters

Blockchain-based Service Network User Manual

87

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 Response ID code int Y
0: successful

-1: failed

2
Response

Message
msg String Y

Body

1 Event ID eventId String Y
Null when the code

is not 0

Example
{

 "header": {

 "code": 0,

 "msg": "Transaction successful"

 },

 "mac":

"MEUCIQDYSTwYhh6EDHT5Z7ukcqXW9LMjZW6WPnrv8Xt14RuH2AIgIwa5K7NK4/TThzs8

z6VfkpNNJU+dzAXeypFmfjkru88=",

 "body": {

 "eventId": "xxxxxxxxxxxxxxxxxxxxxxxxxx"

 }

}

5.4.4.14 Smart Contract Event Query API

Use this API to query the list of monitored smart contract events that have been registered.

1. Interface address:

 https://PCNGatewayAddress/api/fiscobocs/v1 /event/query

2. Call method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Example:

{"header":{"userCode":"USER0001202006042321579692440","appCode":"app000120200604232

3057101002","tId":""},"mac":"MEUCIQC2NTuUlsxQSWPpZwwhJK9zXEMaeYZC04Ar0P5Twy

p5AQIgFvZrskasuLiYfOGxd1F9TCetWHIfENg8BCiYfNS1xGk=" }

5. Response parameters

https://pcngatewayaddress/api/fiscobocs/v1%20/event/query

Blockchain-based Service Network User Manual

88

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 Response ID code int Y

0: Query

successful

-1: Query

failed

2 Response Message msg String Y

body

1
Block generation

event
blockEvent []blockEvent Y

Null when the

code is not 0

2 Contract event contractEvent
[]contractEven

t
Y

blockEvent

1
block generation

event
eventId string Y

Null when the

code is not 0

2 App code appcode String Y

3 User code userCode String Y

4 Notification URL notifyUrl String Y

5
Attachment

parameters
attachArgs String N

6 Create time createTime String Y UTCtime

contractEvent

1
block generation

event
eventId string Y

2 App code appcode String Y

3 User code userCode String Y

4 Notification URL notifyUrl String Y

5
Attachment

parameters
attachArgs String N

6 Create time createTime String Y UTCtime

7 Contract address contractAddress String Y

Example

{

 "header": {

 "code": 0,

 "msg": "Transaction succssful"

 },

 "mac":

"MEUCIQCQ/RjmlVkLKZw6jcLKBPh1BwK4EIQE001vUAKPVq1HTgIgXUQ7Bn+y8

D8xQxYUwtZOoh/bpteAPCUtKXZeAiN7cMU=",

 "body": {

 "blockEvent": [

 {

 "eventId": "ba537419953e4e219ceb0fe26ad5e125",

 "appCode": "app0001202006042323057101002",

 "userCode": "USER0001202006042321579692440",

 "notifyUrl": "http://127.0.0.1:18080",

 "attachArgs": "abc=123",

 "createTime": "0001-01-01 00:00:00.000 +0000 UTC"

Blockchain-based Service Network User Manual

89

 }

],

"contractEvent": [

 {

 "eventId": "ba537419953e4e219ceb0fe26ad5e126",

 "appCode": "app0001202006042323057101002",

 "userCode": "USER0001202006042321579692440",

 "notifyUrl": "http://127.0.0.1:18080",

 "attachArgs": "abc=123",

 "createTime": "0001-01-01 00:00:00.000 +0000 UTC",

 “contractAddress”:” 0x866aefc204b8f8fdc3e45b908fd43d76667d7f76”

 }

]

 }

}

5.4.4.15 Remove Smart Contract Event API

This interface is used to remove a smart contract event’s registration from the event list.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/chainCode/event/remove

2. Call method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Body

1 Event ID eventId String Y

Example:

{"header":{"appCode":"CL20191107112252","userCode":"lessing"},"body":{"eventId":"bd3391de

edbe44a7ad5b7f80ce59abfa"},"mac":"MEQCIE3/CLG5LxZZN7En7LZvzthajwxHzpvDduXSsw4

Tb1JFAiAXGJ4WVtyCKbtCasQGofCkge8NOgZDNPgJIdTCtCi2SQ=="}

5. Response parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 Response ID code int Y

0: remove

successful

-1: remove failed

Blockchain-based Service Network User Manual

90

2
Response

Message
msg String Y

Example

{"header": {"code": 0, "msg": "Remove Event Successful"}, "body": null, "mac":

"MEUCIQCaTFLliY7pPjkwcmSsLXOth7k9bQj9Sblq+1nMVjkFAAIgUsizFO+f1+dxU3/

hPxjf/+na4qG6aQFftJIWGtMhlVI="}

5.4.4.16 Smart Contract Event Notification Message API

This interface is implemented on the off-BSN system side. When the PCN gateway receives

the notification of a triggered event, it uses this interface to notify the off-BSN system about

the execution result.

After receiving the notification successfully, the off-BSN system returns a string containing

“success”, otherwise, the gateway will send the notification again at 3, 12, 27, and 48 seconds

respectively, for a total of five times.

1. Call method: POST

2. Signature algorithm: required and refer to Section 5.4.4.1

3. Call parameters

No. Field name Field Type Required Remarks

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

body

1 Registered Event ID eventId String Y

2 PCN ID orgCode String Y

3
Registered Event

parameters
attachArgs String N

Additional

parameters

entered during

registration

4
Response random

string
nonceStr String Y

Off-BSN system

uses this value

to judge if the

notification is

already

received. This

string remains

the same at the

repeated

notifications.

5 Event type eventType String Y

6 Event data eventData String Y

Example:
{"header":{"userCode":"USER0001202006042321579692440","appCode":"app000120200604232

3057101002"},"body":{"eventId":"5b5b865f8dc94ae59d215cf26aa81d69","orgCode":"ORG20200

41114171692360","appCode":"app0001202006042323057101002","attachArgs":"abc=123","nonc

eStr":"52f080f27ff045eb87e21812d12cee40","eventType":1,"eventData":"{\"appId\":\"app000120

2006042323057101002\",\"blockNumber\":17,\"eventType\":1,\"groupId\":135}"},"mac":"MEUCI

Blockchain-based Service Network User Manual

91

QD3Sp6xuI4DHy/GOb9z3nH6kQisEzfXvZ/Hn/mfZXIAOgIgYsISRfBKSJGt4FrmxETflfR4A8Ve

nCZHvxthMFUWRkc="}

5.4.4.17 Transaction Receipt Status

Under Key Trust Mode, the description of the returned transaction status when the off-BSN

system invokes the FISCO DApp smart contracts via PCN gateway APIs are shown as follows:

status(Decimal/

Hexadecimal)
message Explanation

0(0x0) None No Error

1(0x1) Unknown Unknown Error

2(0x2) BadRLP Invalid RLP Error

3(0x3) InvalidFormat Invalid Format Error

4(0x4) OutOfGasIntrinsic

The length of smart contract exceeds gas

limit/smart contract invoking parameters

exceed gas limit

5(0x5) InvalidSignature Invalid Signature Error

6(0x6) InvalidNonce Invalid nonce Error

7(0x7) NotEnoughCash Not enough cash Error

8(0x8) OutOfGasBase Parameters too long (RC version)

9(0x9) BlockGasLimitReached Gas limit reached Error

10(0xa) BadInstruction Bad Instruction Error

11(0xb) BadJumpDestination Bad Jump Destination Error

12(0xc) OutOfGas
Out of gas to execute the smart contract/the

length of smart contract exceeds the limit.

13(0xd) OutOfStack Out of Stack Error

14(0xe) StackUnderflow Stack Under Flow Error

15(0xf) NonceCheckFail Nonce check failed Error

16(0x10) BlockLimitCheckFail Block limit check failed Error

17(0x11) FilterCheckFail Filter check failed Error

18(0x12) NoDeployPermission No Deployment Permission Error

19(0x13) NoCallPermission Illegal call Error

20(0x14) NoTxPermission Illegal transaction Error

21(0x15) PrecompiledError Precompiled Error

22(0x16) RevertInstruction Revert Instruction Error

23(0x17) InvalidZeroSignatureFormat Invalid Signature Format

24(0x18) AddressAlreadyUsed Address Already Used Error

25(0x19) PermissionDenied Permission Denied

26(0x1a) CallAddressError Call Address does not exist Error

5.5 Development SDK and Examples

5.5.1 BSN Gateway SDK Example

Normally, if an off-BSN system wants to communicate with a permissioned DApp service on

BSN, it has to call the public city nodes (PCN) gateway APIs. We provide a BSN Gateway

SDK (Software Development Kit) which can help developers quickly implement an off-BSN

system to call the PCN Gateway. Inside the SDK, we provide PCN gateway API encapsulation

which you can use to implement the transaction querying, transaction interface calling,

generate public key and private key locally, register user certificate, generate certificate

signature, encrypt and decrypt data, etc.

Blockchain-based Service Network User Manual

92

Download links:

https://github.com/BSNDA/PCNGateway-Go-SDK

https://github.com/BSNDA/PCNGateway-Java-SDK

https://github.com/BSNDA/PCNGateway-PY-SDK

https://github.com/BSNDA/PCNGateway-CSharp-SDK

5.5.2 Off-BSN System Examples

For your reference, the following examples are sample source code of chaincode/smart contract

invocation through gateway API by the off-BSN systems developed based on prefabricated

chain code/smart contract package, including Golang, Java, C#, and python language

examples.

➢ Fabric example

Download links:

https://github.com/BSNDA/FabricBaseChaincode

➢ FISCO BCOS example

Download links:

https://github.com/BSNDA/FISCOBaseContract

We invite experienced developers who are interested in BSN to work together to optimize the

SDK and sample packages. If you'd like to participate, please contact us on GitHub.

5.6 BSN Testnet Services

5.6.1 Overview

BSN Testnet is a free test environment for developers to test their permissioned DApp services.

Developers can publish an unlimited number of permissioned DApp services on the testnet.

Unlike the BSN production environment, it is not necessary to choose the public city nodes

and configure the invocation authorities of smart contracts when publishing DApp services on

the testnet. The Testnet supports Hyperledger Fabric and FISCO BCOS frameworks, and will

continue to integrate all BSN-adapted permissioned frameworks. Like all testnets do, we will

occasionally reset the Testnet and delete all smart contracts and ledger data. Therefore, please

do not use the Testnet as a commercial or production environment. We welcome developers to

try the service and provide us with feedback and suggestions as we continue to make

improvements.

5.6.2 Permissioned DApp Service Publication

The steps to publish a permissioned DApp service for testing are as follows:

1. Create a new test service

Go to the Permissioned Services > Testnet Services page to publish the service.

https://github.com/BSNDA/PCNGateway-Go-SDK
https://github.com/BSNDA/PCNGateway-Java-SDK
https://github.com/BSNDA/PCNGateway-PY-SDK

Blockchain-based Service Network User Manual

93

Click Create a Test Service and input the service name, version, and select a platform type.

Click Upload Chaincode Package to upload the chaincode or smart contract package. You

can upload multiple chaincode/smart contract packages in a permissioned DApp service.

Input the information and click Confirm to upload the package.

2. Deploy the permissioned DApp service:

Click Start Deploying to deploy the service.

Blockchain-based Service Network User Manual

94

After successfully deploying the chaincode/smart contract, developers can call it from their

off-BSN systems so that they can configure and debug the functions easily.

Note: To keep the resources stable, DevOps will periodically clean up the chaincode/smart

contract packages and ledger data on the Testnet.

5.6.3 Interchain Services on BSN Testnet

A demo version of Interchain Communications Hub (ICH) is now live on the Testnet,

integrating two interchain solutions based on the relay chain mechanism: (1) Poly Enterprise

developed by Onchain Tech and (2) IRITA developed by Bianjie AI. We welcome developers

to try out and provide feedback and suggestions, and we will continue to improve the

functionality and expect to release a commercial version in 2021.

For detailed descriptions and examples of ICH services, please refer to chapter 8, "Interchain

Services"

Blockchain-based Service Network User Manual

95

6 Dedicated Node Services

6.1 Overview

BSN dedicated node services apply BSN technologies including multi-layer framework

adaptation, virtualized container, automated deployment and node gateway to provide users

with "out-of-the-box" blockchain cloud services. Users can quickly create their own dedicated

permissioned blockchain operating environment, configure node's CPU, memory, disk capacity

and other parameters in the BSN portal; they can independently manage nodes, publish smart

contracts, access node data and monitor blockchain operation status. The dedicated node does

not restrict APIs of the framework, and all APIs can be called by developers after they access

the dedicated node through the gateway.

Currently, dedicated node services allow users to build the permissioned chain services based

on ConsenSys Quorum (an open source, free and enterprise-focused blockchain framework) in

the BSN public city node built on AWS cloud platform. The version number of ConsenSys

Quorum is v20.10.0, and its consensus mechanism supports Raft and IBFT mechanisms.

6.2 Create Projects

1. In the BSN menu, click the Permissioned Service dropdown, in the list, click Dedicated

Node Services to open the page. The page lists the projects created by the user and shows

the status information of each project.

2. Click Create Project button and jump to the information page. This page contains 4

sections: Basic Information, Node Information, Gateway Information and Data Usage

Information.

⚫ Basic Information: This section shows the basic information of the service, including

project name, framework, consensus mechanism (options include: Raft, IBFT), cloud

platform, and region.

Blockchain-based Service Network User Manual

96

⚫ Node Information: The publisher can select the number of nodes and other resource

information, including CPU, memory and data capacity. The price is automatically

calculated based on the resources which publisher has selected.

⚫ Gateway Information: This section shows the information of the gateway node, and this

node contains Nginx service and a blockchain browser. Publisher does not need to select

resources.

⚫ Data Usage Information: This section shows the unit data price for inbound gateway

traffic and outbound gateway traffic.

3. Click Next button to jump to Charge Details page. This page has 3 sections: Resource

Cost, Data Usage Information and Total Cost.

Blockchain-based Service Network User Manual

97

⚫ Resource Cost: Resource Cost section contains the cost of node resources and gateway

resources. According to the resource cost information, the publisher can either pay by

month or pay by year. A discount will be applied when paying annually.

⚫ Data Usage Information: This section shows the unit data price for inbound gateway

traffic and outbound gateway traffic.

⚫ Total Cost: The total charges that the publisher should pay for.

4. After the publisher confirms the Charge details, click "Confirm" button to make payment.

The payment will be deducted from the user's personal (or corporate) account. If the

deduction fails, the bill will be kept for 72 hours before expiration. If you still want to open

a dedicated node service, you can resubmit or recreate the project by editing the current

project.

Note: In terms of dedicated node services payment, developers can make payments for

dedicated node services with the status of "not deployed" and pending payment, payment

failed, and "running" but in arrears. The payment will be debited from the user's personal

(or corporate) account. After the payment is successful, the developer should wait for the

deployment of the dedicated node.

6.3 Edit Projects

1. Dedicated node services with the status of "not deployed" and billing invalid, pending

payment, payment failed, and "deployment failed" and fully refunded can be edited. In the

edit page, developer can edit the basic information and node information.

2. Once edited the information, developer can jump to the Charge Details page to pay the bill.

After the payment is successfully made, developer can then wait for the deployment of the

dedicated node.

Blockchain-based Service Network User Manual

98

6.4 Delete Projects

Dedicated node services that are in the status of "not deployed" with expired billing and

"deployment failed" with full refund can be deleted.

6.5 View Project Details

When the dedicated node has been deployed, the developer can view the detailed information

of the project. Click Details button in Action column to jump to the project details page. There

are 3 sections in this page: Basic Information, Resource Information and Deployment

Information.

⚫ Basic Information: Project Name, Framework, Consensus, Cloud Platform, Region,

Payment Status and Created Date.

⚫ Resource Information: Node resource and cost information, Gateway Cost Information

and Data Usage Information.

⚫ Deployment Information: The developer can view node information and browser

information. Clicking on the "Details" button corresponding to the peer node, developer

can view the information of Access and Credentials, Transaction Manager cluster, and

Default Wallet.

Blockchain-based Service Network User Manual

99

By clicking on the "Details" button corresponding to gateway services, the developer can

obtain the URL address of the blockchain browser.

6.6 Unsubscribe Projects

For the dedicated node service in Running status, the publisher can unsubscribe that project:

For users who pay monthly for node and gateway resources, no refund will be generated when

unsubscribing; for users who pay annually for node and gateway resources, refunds will be

made at the point of time from the next month to the end of the billing cycle when unsubscribing.

Blockchain-based Service Network User Manual

100

The discount policy for annual payment will be cancelled and the refund will be calculated by

actual refundable months.

6.7 Edit Authorized Account

Authorized account is mainly used for the verification of connecting nodes or blockchain

browsers to increase network security. Only the dedicated node with successful payment and

running can edit the authorized account. Click "Edit Authorized Account" button in the

dedicated node service list and jump to the page of editing the authorized account. Enter the

new username, new password, confirm the new password, and click the "Confirm" button to

edit the authorization account.

Blockchain-based Service Network User Manual

101

7 Permissionless Services

7.1 Overview

The Permissionless service allows the participant to select a public city node to access a plan

that can be a free plan or a premium plan. When this is done, the participant can create a project,

obtain the project ID, key and access parameters which can be used to access selected public

chain node gateway. With the Permissionless service, the default plan is free for participants,

however, it has limited daily requests and projects. BSN has created several other plans that

can be upgraded to, for a certain fee, paid on a monthly basis.

7.2 Select Plans

On the page of Permissionless services, users can select different city nodes to participate in

Permissionless services. The nodes in blue at the top of the list represent those activated for the

free plan or premium plans on that city node. The nodes in grey at the bottom represent no

plans are purchased or used on that city node.

When you click and expand the public city node, you can see all public chain frameworks

supported by the city node. Users can decide whether to choose this city node as the access

entrance according to their needs. The public chain frameworks supported by different city

nodes may be different. In general, we recommend that developers choose a city node that is

close to them, so that the access speed will be relatively fast.

By default, participants on the Permissionless service have a free plan that is free to use up to

2000 daily requests, allowed TPS of 100 and maximum of 3 projects. However, a participant

can upgrade to a higher plan available on the platform. To select plans, follow these steps

Blockchain-based Service Network User Manual

102

1. On the Permissionless page, click Buy in the Select Your Plan section.

2. In the Details page, locate the Select or Update your plan section and click Buy on the

appropriate plan.

3. In the Are you sure you want to buy package window, click the project agreement and

click Confirm.

4. In the Select Payment Method page, select the appropriate payment method and click

Next Step to be redirected to Stripe.

The BSN portal never records and stores any credit card information.

Blockchain-based Service Network User Manual

103

5. On the Stripe Payment page, click Pay to display the Receipt and Invoice.

Blockchain-based Service Network User Manual

104

7.3 Create and Manage Projects

With the Permissionless service, projects can be created in a much simpler way when compared

with Permissioned service as plans are embedded into the project, making it easier for

participants to manage. To create and manage projects follow these steps:

1. In the Permissionless Service page, click Create new project in the development plan

section.

Blockchain-based Service Network User Manual

105

2. In the Create a new project window, enter the Project Name, select the Public Chain to

access from the dropdown list, input the Daily Requests number if needed. Then click

Create Project. The Daily Requests number is optional, and it is used to control the TPD

(transactions per day) for this project.

This will automatically create the project and list it in the Project Information tab.

After a project has been created it can be managed using available tools for the project. To

manage a project, follow these steps:

1. Locate the project to be managed, click Upgrade to display the Plans page.

2. Select the appropriate plan to Upgrade to and click confirm to display the payment page.

Blockchain-based Service Network User Manual

106

3. To enable the project key, in the Permissionless Service page, click Project list to display

the list of projects. In Action, click Enable Key to enable the project key. Then the

information page on enabling the key will be displayed. Click Confirm.

4. To update a project key, click Update Key. Then the information page on updating the

key will be displayed. Click Confirm.

5. To delete a project, click Delete. A confirmation message will be displayed asking if you

wanted to delete the project. Click Confirm to delete it.

7.4 Off-BSN system Access Guide

7.4.1 Overview

BSN provides shared or dedicated public chain nodes for public chain application developers.

Developers can quickly access all public chain networks by accessing the gateway of the public

city node.

Blockchain-based Service Network User Manual

107

After developers select the public chain framework (netcode) in the BSN portal to create the

public chain project, they will get the gateway’s domain name address (url), project number

(id), project key (key), public chain supportive protocol {protocol} and public chain gateway

API address.

The developer accessing the PCN gateway via HTTP should concatenate the request address

in "https://{url}/api/{id}/{netcode}/{protocol}/{subUrl}" format. If project key is enabled, "x-

APi-key:{key}"should be added to the request header. If the public chain nodes provide

multiple components, they should add {subUrl}; If the Nervos CKB has an Indexer component

service in addition to the RPC service, "{subUrl}" should fill the indexer value, {subUrl} is

optional.

The developer accessing the node gateway via WebSocket, should concatenate the Key and

SubUrl to the path address of the target machine and concatenate to the format of

{url}/api/{id}/{key}/{netcode}/{subUrl}. If the project key is not enabled, then the {key} filed

should be null. If there is no subUrl, this field can be null. That is, developers can think of the

content after/API as the method name of a target machine.

7.4.2 Ethereum

Ethereum is a global, open-source platform for decentralized applications. On Ethereum, you

can write code that controls digital value, runs exactly as programmed, and is accessible

anywhere in the world.

For more resources, please visit: https://ethereum.org/en/developers/

The BSN public city node gateway is adapted to the Ethereum JSON RPC API, so developers

can initiate transaction requests to the node gateway via HTTP JS-RPC. For detailed docking

instructions please visit: https://eth.wiki/json-rpc/API

The following table shows additional error code definitions for public city node gateways:

Error code Transaction error code Error code description

500
-32099 Service internal exception

503

429 -32098 TPS, TPD current limit

https://ethereum.org/en/developers/
https://eth.wiki/json-rpc/API

Blockchain-based Service Network User Manual

108

401 -32097 Authentication permission failed

7.4.3 EOS

EOSIO is a blockchain platform designed for the real world. Built for both public and private

use cases, EOSIO is customizable to suit a wide range of business needs across industries with

rich role-based security permissions, industry-leading speeds and secure application

processing.

For more resources, please visit: https://developers.eos.io

The BSN city node gateway is adapted to EOSIO's JSON RPC API, so developers can

initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking

instructions please visit:

https://developers.eos.io/manuals/eos/latest/nodeos/plugins/chain_api_plugin/api-

reference/index#operation/get_block

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500
3100000

Service internal exception

503 Service Unavailable

7.4.4 Nervos

The Nervos Network is an open source public blockchain ecosystem and collection of

protocols solving the biggest challenges facing blockchains like Bitcoin and Ethereum today.

For more resources, please visit: https://docs.nervos.org/

The BSN city node gateway is adapted to the Nervos JSON RPC API, so developers can

initiate transaction requests to the node gateway via HTTP JSON-RPC.

For detailed docking instructions please visit:

https://docs.nervos.org/docs/reference/rpc

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

500
-32099 Service internal exception

503

429 -32098 TPS, TPD current limit

401 -32097 Authentication permission failed

https://developers.eos.io/
https://developers.eos.io/manuals/eos/latest/nodeos/plugins/chain_api_plugin/api-reference/index#operation/get_block
https://developers.eos.io/manuals/eos/latest/nodeos/plugins/chain_api_plugin/api-reference/index#operation/get_block
https://www.nervos.org/#network
https://docs.nervos.org/
https://docs.nervos.org/docs/reference/rpc

Blockchain-based Service Network User Manual

109

7.4.5 NEO

NEO is an open-source, community driven platform that is leveraging the intrinsic advantages

of blockchain technology to realize the optimized digital world of the future.

For more resources, please visit: https://neo.org/dev

The BSN city node gateway is adapted to the NEO JSON RPC API, so developers can

initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking

instructions please visit:

https://docs.neo.org/docs/zh-cn/reference/rpc/latest-version/api.html

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

500
-32099 Service internal exception

503

429 -32098 TPS, TPD current limit

401 -32097 Authentication permission failed

7.4.6 Tezos

Tezos is an open-source platform for assets and applications backed by a global community of

validators, researchers, and builders. Tezos is designed to provide the safety and code

correctness required for assets and other high value use cases. Its native smart contract

language, Michelson, facilitates formal verification, a methodology commonly used in

mission-critical environments such as the aerospace, nuclear, and semiconductor industries.

For more resources, please visit: https://developers.tezos.com

The BSN city node gateway is adapted to the Tezos JSON RPC API, so developers can

initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking

instructions please visit:

https://tezos.gitlab.io/api/rpc.html

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500
3100000

Service internal exception

503 Service Unavailable

7.4.7 IRISnet

Within the ecosystem of IRISnet, the core innovation is embodied in three aspects: integrate

the service-oriented infrastructure into the Cosmos network; integrate business services

https://docs.neo.org/docs/zh-cn/reference/rpc/latest-version/api.html
https://developers.tezos.com/
https://tezos.gitlab.io/api/rpc.html

Blockchain-based Service Network User Manual

110

provided by heterogeneous systems, including public chains, consortium chains, and existing

systems; the connectivity of services is realized through the blockchain Internet.

For more resources, please visit: https://www.irisnet.org/docs

The BSN city node gateway is adapted to the IRISnet JSON RPC API, so developers can

initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking

instructions please visit:

https://www.irisnet.org/docs/light-client/intro.html#rest-apis

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

500
-32099 Service internal exception

503

429 -32098 TPS, TPD current limit

401 -32097 Authentication permission failed

7.4.8 dfuse-eos

dfuse is a massively scalable open-source platform for searching and processing blockchain

data. It provides real-time, historical and fork-aware search engine (dfuse Search), transaction

push guarantees (dfuse Push Guarantee), transaction lifecycle (dfuse Lifecycle), historical state

services (dfuse State), and many more blockchain building blocks. dfuse empowers developers

with capabilities to build modern blockchain applications with fast, fluid interfaces that deliver

exceptional user experiences.

For more resources, please visit: https://docs.dfuse.io

The current dfuse EOS mainnet access on BSN is available through dfuse Community Edition

hosted by EOS Nation. Try out the dfuse API features on the [GraphiQL playground]

(https://eos.dfuse.eosnation.io/graphiql).

If your needs exceed the Community Edition limits, please contact dfuse to set up an

[Enterprise plan] (https://dfuse.io/zh/pricing/?utm_source=BSN).

The BSN PCN gateway is equipped with sfuse's JSON RPC API and GraphQL, so developers

can issue EOSIO transaction requests to the node gateway via HTTP JSONrpc or GraphQL.

For detailed instructions, please visit the link: https://docs.dfuse.io/reference/eosio

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500
3100000

Service internal exception

503 Service Unavailable

https://www.irisnet.org/docs
https://www.irisnet.org/docs/light-client/intro.html#rest-apis
https://docs.dfuse.io/
https://eos.dfuse.eosnation.io/graphiql
https://dfuse.io/zh/pricing/?utm_source=BSN
https://docs.dfuse.io/reference/eosio

Blockchain-based Service Network User Manual

111

7.4.9 Solana

The Solana Program Library (SPL) is a collection of on-chain programs targeting the Sealevel

parallel runtime. These programs are tested against Solana's implementation of Sealevel,

solana-runtime, and deployed to its mainnet. As others implement Sealevel, we will graciously

accept patches to ensure the programs here are portable across all implementations.

For more resources, please visit below websites:

Solana Documentation Homepage: https://docs.solana.com/

Solana Program Library (SPL) Documentation: https://spl.solana.com/

JavaScript API Reference: https://solana-labs.github.io/solana-web3.js/

Developing apps on Solana: https://docs.solana.com/apps

The BSN city node gateway is adapted to the Solana JSON RPC API and WSS, so developers

can initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed

docking instructions please visit: https://docs.solana.com/apps/jsonrpc-api

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500
3100000

Service internal exception

503 Service Unavailable

7.4.10 ShareRing

ShareRing is built on distributed ledger technology, allowing for a transparent, decentralized

ecosystem.

For more resources, please visit: https://sharering.network/media-kit.html

The BSN city node gateway is adapted to the ShareRing JSON RPC API and WSS, so

developers can initiate transaction requests to the node gateway via HTTP JSON-RPC. For

detailed docking instructions please visit:

https://sharering.network/resources/ShareRing+API+Overview.pdf

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500
3100000

Service internal exception

503 Service Unavailable

https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://docs.solana.com/
https://spl.solana.com/
https://solana-labs.github.io/solana-web3.js/
https://docs.solana.com/apps
https://docs.solana.com/apps/jsonrpc-api
https://sharering.network/media-kit.html
https://sharering.network/resources/ShareRing+API+Overview.pdf

Blockchain-based Service Network User Manual

112

7.4.11 Algorand

Algorand built and developed the world’s first open, permissionless, pure proof-of-stake

blockchain protocol that, without forking, provides the necessary security, scalability, and

decentralization needed for today’s economy. With an award-winning team, Algorand enables

traditional finance and decentralized financial businesses to embrace blockchain for

decentralized applications.

For more developer resources, please visit: https://developer.algorand.org/

The BSN city node gateway is adapted to the Algorand Rest API, so developers can initiate

transaction requests to the node gateway via Rest. Developers can also use Algorand SDK to

connect to BSN nodes for developing and deploying applications.

For detailed docking instructions please visit:

https://developer.algorand.org/docs/reference/sdks/

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

401 401 Authentication permission failed

429 429 TPS, TPD current limit

500 500 Service internal exception

503 503 Service Unavailable

7.4.12 BTY

BTY (Bityuan) is a simple, stable and scalable public chain network. It is developed using the

technology of Chain33 and is the world's first public chain project with a multi-chain

(parachain) architecture.

Multiple parachains can be developed on the BTY blockchain. The BTY’s main chain is

responsible for transaction settlement, and smart contracts and virtual machines are deprived

from the main chain and put on the parachain for independent executions, and multiple

parachains co-exist to improve computing efficiency. In addition, parachains can be

interconnected by the main chain.

At present, there are a number of application cases of parachain based on BTY public chain,

such as DeFi, C2C trading, royalty points, prepaid cards, games, real estate, commodities,

smart clearing, etc.

For more developer resources, please visit: https://chain.33.cn/

The BSN City Node Gateway is adapted to the BTY JSON RPC API, so developers can initiate

BTY transaction requests to the node gateway by means of JSON-RPC.

For detailed docking instructions, please visit: https://chain.33.cn/document/142

https://developer.algorand.org/
https://developer.algorand.org/docs/reference/sdks/
https://chain.33.cn/
https://chain.33.cn/document/142

Blockchain-based Service Network User Manual

113

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500
3100000

Service internal exception

503 Service Unavailable

7.4.13 Oasis Network

The Oasis Network, as a next generation blockchain, is the first scalable, privacy-enabled

blockchain network for open finance and a responsible data economy. Combined with its high

throughput and secure architecture, the Oasis Network is able to power private, scalable DeFi

- expanding it beyond traders and early adopters to a mass market, unlocking new use cases

like under-collateralized loans, private AMMs and more. The Oasis Network’s privacy features

can also create a new type of digital asset called CryptoData, which allows users to control

their data and earn rewards. It is achieved through an innovative technical architecture that

separates computation and consensus layers into ParaTime and consensus layers.

Oasis Network's powerful, privacy-preserving design has been used in the following projects:

1) CryptoSafe.

2) Nebula Genomics, the first consumer genomics application that gives users complete

control over their genomes.

(3) Fortune 500 Healthcare Company, for confidential data sharing.

Investors of Oasis Network include a16z, Accel, Polychain, Pantera, IOSG, etc.

To learn more information, please join the Oasis Community at t.me/oasisprotocolcommunity

and follow us on Twitter @oasisprotocol.

For more resources, please visit: https://docs.oasis.dev/general/

The BSN city node gateway is adapted to the Oasis Network REST API, so developers can

initiate transaction requests to the node gateway via HTTP REST. For detailed docking

instructions please visit: https://www.rosetta-api.org

Error code Error code description

401 Authentication permission failed

429 TPS, TPD current limit

500 Service internal exception

503 Service Unavailable

7.4.14 Polkadot

https://docs.oasis.dev/general/
https://www.rosetta-api.org/

Blockchain-based Service Network User Manual

114

Polkadot is a next-generation blockchain protocol that unites an entire network of purpose-built

blockchains, allowing them to operate seamlessly together at scale. Because Polkadot allows

any type of data to be sent between any type of blockchain, it unlocks a wide range of real-

world use cases. By bringing together the best features from multiple specialized blockchains,

Polkadot paves the way for new decentralized marketplaces to emerge, offering fairer ways to

access services through a variety of apps and providers. Polkadot’s design offers several

distinct advantages over existing and legacy networks, including heterogeneous sharding,

scalability, upgradeability, transparent governance and cross-chain composability.

For more resources, please visit: https://substrate.dev/

The BSN city node gateway is adapted to the Polkadot JSON RPC API, so developers can

initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking

instructions please visit: https://polkadot.js.org/docs/substrate/rpc/#chain

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500
3100000

Service internal exception

503 Service Unavailable

7.4.15 Casper

CasperLabs, the developer of the Casper Network, provides professional services and support

for organizations building on the Casper network. Guided by open-source principles,

CasperLabs is committed to supporting the next wave of blockchain adoption among

businesses and providing developers with a reliable and secure framework to build private,

public and hybrid blockchain applications. Its team possesses deep enterprise technology

experience, hailing from organizations including Google, Adobe, AWS, Dropbox and

Microsoft.

For more resources, please visit: https://casperlabs.io/

The BSN city node gateway is adapted to the Casper JSON RPC API, so developers can initiate

transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking

instructions please visit:

https://docs.rs/casper-node/latest/casper_node/rpcs/index.html

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500 3100000 Service internal exception

https://substrate.dev/
https://polkadot.js.org/docs/substrate/rpc/#chain
https://casperlabs.io/
https://docs.rs/casper-node/latest/casper_node/rpcs/index.html

Blockchain-based Service Network User Manual

115

503 Service Unavailable

7.4.16 Findora

Findora’s mission is to build a decentralized financial network for issuing confidential assets

and smart contracts. Findora has created a system that achieves privacy-preserving

transparency. Its flexible technology can also be used by institutions to replace their current

infrastructure or deploy in the cloud – all interoperable with the public Findora network.

For more resources, please visit: https://findora.org/

The BSN city node gateway is adapted to the Findora REST API, so developers can initiate

transaction requests to the node gateway via HTTP REST. For detailed docking instructions

please visit:

https://api.findora.org/

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500
3100000

Service internal exception

503 Service Unavailable

7.4.17 Near

NEAR is a Proof-of-Stake Layer-1 public blockchain platform built with usability and

developer accessibility in mind. With a novel sharding mechanism called Nightshade, NEAR

can scale limitlessly and offers familiar user experiences just like the web today.

For more resources, please visit: https://near.org/

The BSN city node gateway is adapted to the Near JSON RPC API, so developers can initiate

transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking

instructions please visit:

https://docs.near.org

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500
3100000

Service internal exception

503 Service Unavailable

https://findora.org/
https://api.findora.org/
https://near.org/
https://docs.near.org/docs/api/quickstart

Blockchain-based Service Network User Manual

116

Blockchain-based Service Network User Manual

117

8 Interchain Services

A cross-chain mechanism is the interoperability between two or more relatively independent

blockchains, and it enables the swap and transfer of data, asset and information. On the BSN,

every blockchain maintains its own transactions, consensus, and ledgers, carrying business data

and information of different DApps. The cross-chain mechanism realizes data sharing and

business collaboration among blockchains, and to break the silos between chains, allows data

to flow securely and reliably across multiple chains. The main functions of the cross-chain

system include: cross-chain registration management mechanism, cross-chain contract

functions, cross-chain transaction verification, cross-chain message routing protocol, cross-

chain transaction atomicity guarantee, etc.

The BSN Interchain Communications Hub (ICH) adopts the cross-chain protocol of

heterogeneous chains and the design of double-layer structure, using relay chains as cross-

chain coordinators, multiple heterogeneous chains as cross-chain transaction executors, and

acts as a relayer of cross-chain data. By solving validity, security, and transactional issues of

cross-chain data, a secure, easy-to-use and efficient cross-chain system is implemented：

 Supports both isomorphic and heterogeneous chains.

 Supports any information to cross the chains.

 Very easy to access. Application chains do not need to do custom development adaptation,

just deploy one smart contract per chain.

 Transactional support, supporting not only scenarios with the need for ultimate consistency

of transactions, but also scenarios with the need for strong consistency of transactions,

with support for any transaction, and scalable to any number of chains.

 Cross-chain protocols are secure and reliable, based on cryptography and consensus

algorithms, and each application chain can verify the legitimacy of cross-chain

transactions on its own, thus ensuring the security of cross-chain interactions.

The BSN’s “Interchain Communications Hub” (ICH) is now commercially available and

integrates with Onchain's Poly Enterprise cross-chain solution. It supports cross-chaining

between permissioned chains and cross-chaining between permissioned chains and ETH

Ropsten testnet and NEO testnet. The IRITA-based cross-chain solution is also being adapted

and is expected to be commercially available in the next iteration.

A demo version of ICH is also live on the BSN Testnet, integrating two interchain solutions

based on the relay chain mechanism: Poly Enterprise developed by Onchain and IRITA

Blockchain-based Service Network User Manual

118

developed by Bianjie AI. We welcome all developers to try out and provide feedback and

suggestions to us and we will continue to improve the interchain functionality.

8.1 Interchain Service Management

8.1.1 Open Interchain Services

There are two ways to open Interchain Services: permissioned DApp service publishers can

either open it when upgrading their services, or they can open Interchain Services separately.

1) Open the Interchain Service when upgrading the permissioned service.

For published permissioned services, publishers can open Interchain Services through the

Service Upgrade function:

On the home page, click Permissioned Services -> Published Services, click Service

Upgrade in the Action column to enter the service upgrade page.

In the Interchain Services section, select Yes to activate Interchain Services, and choose the

Interchain Service Protocol. Then, click Confirm to submit the service upgrade. After the

system review and approval, the Interchain Service is successfully opened.

Blockchain-based Service Network User Manual

119

Note: If you open Interchain Services only, you don't need to upload new chaincode package;

after opening the service, when calling across the chain, both source chain and target chain

need to communicate off the BSN about cross-chain parameters, methods and specifications.

2) Directly open the service in Interchain Services

On the home page, click Interchain Services

Click Activate Interchain Services button to enter Select services page, click Activate

Interchain Services in the Action column.

The following steps can refer to Open the Interchain Service when upgrading the

permissioned service.

Note: For activated interchain services, users cannot change the interchain service protocols.

The protocol can only be changed by re-opening the interchain services.

8.1.2 View Interchain Services

On the home page, click Interchain Services, users can find the service list of their activated

interchain services.

Blockchain-based Service Network User Manual

120

Select the service to be checked, click View in the Action column, select Cross-chain

Information, users can check the chain ID, management contract address, management

contract name and cross-chain information.

On the Cross-chain Information page, click Details button to jump to Call Details page. Select

the parameter and click Query to retrieve the detailed cross-chain call information.

Go to List of cross-chain call details section, click Details button in Action column to enter

the Basic Information page, you can view the basic information of the cross-chain call details,

as shown in the figure:

Blockchain-based Service Network User Manual

121

8.1.3 Deactivation and Activation of Interchain Services

1) Deactivation of Interchain Services

On the home page, click Interchain Services, users can see a list of their activated interchain

services. Select the service which needs to be deactivated and click Deactivate button in

Action column.

Click Confirm in the pop-up message to deactivate the interchain service.

Note: It takes a few minutes to deactivate the interchain service, please be patient.

2) Activation of Interchain Services

On the home page, click Interchain Services, users can see a list of their activated interchain

services. Select the service which needs to be activated and click Activate button in Action

column.

Blockchain-based Service Network User Manual

122

Click Confirm in the pop-up message to activate the interchain service.

8.2 Interchain Services based on Poly Enterprise

8.2.1 Overview

A complete cross-chain transaction requires application contracts for multiple chains. For

example, there is an application contract on the Ethereum Ropsten and a FISCO BCOS

application contract on the BSN. These two contracts can interact across chains through the

cross-chain protocol to ensure the correctness of the information. The cross-chain contract

includes a management contract and an application contract. The management contract

implements the core logic of the cross-chain protocol, developed by the BSN development

team and is deployed in each chain; the application contract needs to be implemented by

blockchain application publishers according to the cross-chain protocol and deployed in the

blockchain network.

Management contracts include the following implementations.

1. ETH and FISCO BCOS

• EthCrossChainManager: contains logic of management.

• EthCrossChainData: used to save and manipulate data.

• EthCrossChainManagerProxy: used to implement logical contract upgrades.

2. Neo

• CCMC: contains the logic of management.

3. Fabric

• CCMC: contains the logic of management.

4. BSN Testnet Cross-chain management contract address

The following table shows the framework names, chain IDs, and cross-chain contract names

or addresses for Poly Enterprise-based cross-chain services.

Testnet Framework
Chain

ID

Cross-chain contract

names/addresses

Application Example Contract

China Fabric 88 ccm myhellopoly

Blockchain-based Service Network User Manual

123

FISCO

BCOS
98

0x8f866dE652d34308De82E7D

aF504D1af4B4b05E9

0x2e98f68147887288f1eb2eb

d065ccc46be9bc4f9

International Fabric 89 ccm myhellopoly

FISCO

BCOS
99

0xaF92fAe702C24CF5B214645

AdFE25821b5664667

0xd8e0013aa9b41bb946aee1a

848b5665c17951200

Ropsten
Ethereum 2

0xF6993b7d73B2827420689Db

c0b3068D24E6e467F

0x0b89e4f2103c4700de5ae96f

370f3708c5572211

Testnet
Neo 4

0x10b6edbb6e44188d0ff390654

42081b13bbd109b

0x0ea9e760ca350d950d01b32

c35127b3f7c0c18b5

The application cross-chain contains the following functions:

1. Outbound: The source chain's application contract initiates a cross-chain transaction

request and transfers this request from the source chain to the target chain. The user can

call a self-defined method in the source chain's application contract which calls the

‘crossChain’ method of the management contract. This will send the cross-chain data

through events.

2. Inbound: The target chain application contract receives the cross-chain transaction request.

This request information sent from the source chain is passed to the target chain application

contract. The cross-chain management contract receives and verifies the cross-chain

information. The cross-chain protocol requires the target chain application contract and

function name to be included in the cross-chain information. Then the management

contract invokes the specified method for the specified contract address and passes the

information to the target chain application contract.

8.2.2 Interchain Services based on Hyperledger Fabric

8.2.2.1 Application Contract Development Guide in BSN production environment

The development of Fabric application contract is based on its own business scenario. The

main implementation includes two parts: if the source chain initiates a cross-chain transaction,

its application contract needs to get outbound to access the target chain; if the target chain

receives a cross-chain transaction, its application contract needs to get inbound. Fabric's chain

ID and cross-chain management contract’s name are automatically assigned and generated

through the BSN operations and maintenance system when users open interchain services, and

can be viewed in the BSN portal.

An example of a specific cross-chain transaction call can be found in 7.2.2.3 Demo Contract

Example.

8.2.2.2 Application Contract Development Guide in BSN Testnet

Fabric's chain ID in the BSN China Testnet is 88 and in the BSN International Testnet is 89.

This chain ID is registered in Poly Enterprise, not the channel ID corresponding to Fabric itself.

The name of Fabric cross-chain contract is ccm.

Blockchain-based Service Network User Manual

124

An example of a specific cross-chain transaction call can be found in 7.2.2.3 Demo Contract

Example.

8.2.2.3 Demo Contract Example

BSN production environment and BSN Testnet:

https://github.com/BSNDA/ICH/tree/main/sample/polychain/fabric-contract/online/hellopoly

8.2.3 Interchain Services based on FISCO BCOS

8.2.3.1 Application Contract Development Guide in BSN production environment

The development of FISCO BCOS application contract is based on its own business scenario.

The main implementation includes two parts: if the source chain initiates a cross-chain

transaction, its application contract needs to get outbound to access the target chain; if the target

chain receives a cross-chain transaction, its application contract needs to get inbound.

An example of a specific cross-chain transaction call can be found in 7.2.3.3 Demo Contract

Example.

8.2.3.2 Application Contract Development Guide in BSN Testnet

FISCO's chain ID in the BSN China Testnet is 98 and in the BSN International Testnet is 99.

This chain ID is registered in Poly Enterprise, not the group ID corresponding to FISCO itself.

The application contract example in BSN test network is the same as the production

environment, please visit 7.2.3.1 Application Contract Development Guide in BSN Production

Environment for details.

An example of a specific cross-chain transaction call can be found in 7.2.3.3 Demo Contract

Example.

8.2.3.3 Demo Contract Example

BSN Production Environment and Testnet:

https://github.com/BSNDA/ICH/tree/main/sample/polychain/fisco_contracts/hellopoly

8.2.4 Interchain Services based on Ethereum Ropsten

Application Contract Development Guide

The development of the ETH application contract is based on its own business scenario. The

main implementation includes two parts: if the source chain initiates a cross-chain transaction,

its application contract needs to get outbound to access the target chain; if the target chain

receives a cross-chain transaction, its application contract needs to get inbound. ETH's chain

ID in the BSN Testnet is 2. This chain ID is registered in Poly Enterprise and the configuration

is applicable to both BSN Production Environment and Testnet.

Below is an example of a source chain initiating a cross-chain transaction call:

/**

* @dev: Implements a cross-chain call by invoking the “say” method

 * @param _toChainId: The chain ID corresponding to the target chain being called in the

Poly network

https://github.com/BSNDA/ICH/tree/main/sample/polychain/fabric-contract/online/hellopoly
https://github.com/BSNDA/ICH/tree/main/sample/polychain/fisco_contracts/hellopoly

Blockchain-based Service Network User Manual

125

 * @param _somethingWoW: Parameters passed across the chain

* @return bool

 **/

function say(uint64 _toChainId, bytes _somethingWoW) public returns (bool){

 // Get the cross-chain management contract interface

 IEthCrossChainManagerProxy eccmp =

IEthCrossChainManagerProxy(managerProxyContract);

 // Get the cross-chain management contract address

 address eccmAddr = eccmp.getEthCrossChainManager();

 // Get the cross-chain management contract object

 IEthCrossChainManager eccm = IEthCrossChainManager(eccmAddr);

 // Get the target chain application contract address

 bytes memory toProxyHash = proxyHashMap[_toChainId];

 // Call across the chain

 require(eccm.crossChain(_toChainId, toProxyHash, "hear", _somethingWoW),

"CrossChainManager crossChain executed error!");

 emit Say(_toChainId, toProxyHash, _somethingWoW);

 return true;

}

Below is an example of a target chain call when receiving a cross-chain transaction:

/**

* @param _somethingWoW: Parameters passed across the chain

 * @param _fromContractAddr: The address of the application contract being invoked

 * @param _toChainId: Contract framework chainId being called

 * @return bool

 **/

Blockchain-based Service Network User Manual

126

function hear(bytes _somethingWoW, bytes _fromContractAddr, uint64 _toChainId) public

returns (bool){

 hearSomeThing = _somethingWoW;

 emit Hear(_somethingWoW, _fromContractAddr);

 return true;

}

Demo Contract Example

GitHub: https://github.com/BSNDA/ICH/tree/main/sample/polychain/eth_contracts/hellopoly

8.2.5 Interchain Services based on Neo Testnet

Application Contract Development Guide

The development of Neo application contract is based on its own business scenario. The main

implementation includes two parts: if the source chain initiates a cross-chain transaction, its

application contract needs to get outbound to access the target chain; if the target chain receives

a cross-chain transaction, its application contract needs to get inbound. Neo's chain ID in the

BSN Testnet is 4. This chain ID is registered in Poly Enterprise the configuration is applicable

to both BSN Production Environment and Testnet.

Below is an example of a source chain initiating a cross-chain transaction call:

/// <summary>

 /// This method is used to make cross-chain calls to other target chains (this method is

self-defining)

 /// </summary>

 /// <param name="toChainId">The chain ID of the target chain in the Poly

network</param>

 /// <param name="msg">The cross-chain information that the target chain needs to

pass to apply the contract</param>

 /// <returns></returns>

 [DisplayName("say")]

 public static bool Say(BigInteger toChainId, byte[] msg)

 {

 // Get the application contract on the target chain

https://github.com/BSNDA/ICH/tree/main/sample/polychain/eth_contracts/hellopoly

Blockchain-based Service Network User Manual

127

 var toProxyHash = HelloPoly.GetProxyHash(toChainId);

 // Get the CCMC contract address

 var ccmcScriptHash = HelloPoly.GetProxyHash(neoChainID);

 // Call across the chains

 bool success = (bool)((DynCall)ccmcScriptHash.ToDelegate())("CrossChain", new

object[] { toChainId, toProxyHash, "hear", msg });

 HelloPoly.Notify(success, "[HelloPoly]-Say: Failed to call CCMC.");

 // Event notification

 HelloPoly.SayEvent(toChainId, toProxyHash);

 return true;

 }

Below is an example of a target chain call when receiving a cross-chain transaction:

/// <summary>

 /// This method is used to make cross-chain calls to other target chains (this method is

self-defining)

 /// </summary>

 /// <param name="fromChainId">The chain ID of the source chain in a Poly

network</param>

 /// <param name="toChainId">The chain ID of the target chain in the Poly

network</param>

 /// <param name="msg">Receive a cross-chain message sent by the source

chain</param>

 /// <param name="callingScriptHash">Callback script hash</param>

 /// <returns></returns>

 [DisplayName("hear")]

 public static bool Hear(byte[] inputBytes, byte[] fromProxyContract, BigInteger

fromChainId, byte[] callingScriptHash)

 //commit into ledger

 Storage.Put(fromProxyContract, inputBytes);

 // Event notification

Blockchain-based Service Network User Manual

128

 HearEvent(fromChainId, fromProxyContract, inputBytes);

 return true;

 }

Demo Contract Example

GitHub: https://github.com/BSNDA/ICH/tree/main/sample/polychain/neo-contract

8.3 Interchain Services based on IRITA

8.3.1 Overview

BSN interchain services based on IRITA is a cross-chain network and is a part of the ICH. In

the interchain communication process, developers initiate an interchain service call by their

application contracts, and after receiving this call, the relayer of that application chain will

initiate a cross-chain request to the ICH. After receiving the request, the service provider

transfers the request to the target chain, acquires the transaction result and returns it to the ICH.

Finally, the relayer returns the transaction result to the application chain by calling the cross-

chain contract.

The application contract, cross-chain contract, relayer, ICH, service provider and services are

working together to complete the entire process of interchain services.

Testnet Framework Cross-chain contract names/addresses

China Fabric cc_cross

FISCO BCOS 0xdaa3b22adeef09c9416f01db654035ba8c729522

International Fabric cc_cross

FISCO BCOS 0xb85fc9a3a13ebd9c0855ed3e3832bbf0277e6f0c

8.3.2 Interchain Architecture based on IRITA

1. Cross-chain Contract

a. Service Market

Service Market is a module responsible for managing interchain service information. It

contains the following functions:

 Add Service Binding: Add interchain service information to the application chain,

including: service name, service description, service provider, etc.

 Update Service Binding: Function to modify the service binding information.

 Get Service Bindings: Query the available interchain services.

b. Service Core

As the core of the entire cross-chain contract, Service Core is responsible for receiving a cross-

chain request from the application contract, the request result from the relayer, and return the

https://github.com/BSNDA/ICH/tree/main/sample/polychain/neo-contract

Blockchain-based Service Network User Manual

129

cross-chain call result, including the following functions:

 Call Service: Function to make a cross-chain request. It is invoked by the application

contract by passing the interchain service name, input parameters, callback contract info,

etc. A successful invocation will return a unique request ID.

 Set Response: Return the cross-chain invocation result called by relayer and write the result

to the application chain. If an application contract method needs to be called back during

service invocation, it needs to be called in this function.

 Get Response: Query the cross-chain invocation result by request ID.

2. Application Contract

Application contract is developed by the developer for the interchain services. In an application

contract, the developer can invoke the call service function of the cross-chain contract to make

a cross chain call. A callback function in the application contract also needs to be provided to

get the call result, otherwise developers will have to call the Get Response function in an

application contract to query the service invocation results.

3. Relayer

Relayer is a service that listens for the cross-chain request submitted to ICH by a source chain.

It is responsible for listening the call service function event, and submitting to the ICH.

4. Service Provider

Service provider, connects the HUB to the destination chain. It is a service that listens for the

cross-chain request from the ICH, invokes the destination chain, and returns the transaction

results to the ICH.

5. Interchain Service

The interchain service is developed by the service provider. It could be the smart contract

deployed on one blockchain for an application on another blockchain to call across the chain.

Support from the service provider is required to turn a service into an interchain service.

6. Interchain Communications Hub

As the core component of BSN's interchain service, the ICH is responsible for receiving cross

chain requests submitted by the source chain Relayer, verifying the transaction and initiating

the cross-chain transaction with the Service Provider of the destination chain. After the

transaction is complete, it is also responsible for obtaining the transaction result from the

Service Provider, verifying and returning the result to the source chain Relayer.

8.3.3 Interchain Services in BSN Testnet

In the BSN Testnet, the MintBase contract deployed on ETH Ropsten and Store contract

deployed on FISCO BCOS are available for interchain services. To experience the interchain

services, developers can publish Fabric or FISCO BCOS application contracts, and call

application smart contracts between them.

Developers need to develop application contracts or use sample contracts provided by BSN to

make interchain service invocations.

8.3.3.1 Interchain Application Contract based on Fabric

Interchain Application Contracts Development Guide

1. Preparation:

Blockchain-based Service Network User Manual

130

Run the code below to obtain the BSN interchain consuming contract help package

(ICH.git). Currently, only the GO language version is supported but more versions will be

added later.

cd $GOPATH

 mkdir -p src/github.com/BSNDA && cd src/github.com/BSNDA

 git clone https://github.com/BSNDA/ICH.git

2. Initiate the interchain service request

After creating the Fabric chain code struct and invoke function, import below package:

 import (

 "github.com/BSNDA/ICH/sample/irita/consumers/fabric/crosschaincode"

)

3. Call the crosschaincode.CallService method in the invoke function using the parameters of

the method as follows:

• stub: shim.ChaincodeStubInterface

• serviceName: the interchain service name to invoke, nft for ETH, and bcos-store

for FISCO BCOS

• input: the input object for interchain service

• callbackCC: callback chaincode name

• callbackFcn: callback chaincode function name

• timeout: timeout

The input parameter varies according to the interchain service and type passed in. In the

ETH service, the input structure is as follows:

type Input struct {

 ABIEncoded string `json:"abi_encoded,omitempty"`

 To string `json:"to"`

 AmountToMint string `json:"amount_to_mint"`

 MetaID string `json:"meta_id"`

 SetPrice string `json:"set_price"`

 IsForSale bool `json:"is_for_sale"`

 }

In the FISCO BCOS service, the input structure is as follows:

 type BcosInput struct {

 Value string `json:"value"`

 }

A unique request ID will be returned after successful invocation. Keep this value and use

it to determine the cross-chain results in the callback function.

4. Implement the callback interface：

After the cross chaincode receives the service response from Fabric Relayer, the callback

method name and callback chaincode name passed in will be called to return the service

response. The first parameter of the call returns a JSON-formatted string. Below is the

service response structure:

type ServiceResponse struct {

Blockchain-based Service Network User Manual

131

 RequestId string `json:"requestID,omitempty"`

 ErrMsg string `json:"errMsg,omitempty"`

 Output string `json:"output,omitempty"`

 IcRequestId string `json:"icRequestID,omitempty"`

 }

Method crosschaincode.GetCallBackInfo() could be called to Serialize the value. The

requestID is unique and can be used to conduct the business processing. Output a JSON-

formatted string which is the return value of the crosschain response. Below is the input

data structure:

type InputData struct {

 Header interface{} `json:"header"`

 Body interface{} `json:"body"`

 }

Parameter “Body” is the output object for the service. In ETH service, the input structure

is as follows:

type Output struct {

 NftID string `json:"nft_id"`

 }

In FISCO BCOS service, the output structure is as follows:

type BcosOutput struct {

 Key string `json:"key"`

 }

5. Package the chaincode

ICH.git, which is imported by the chaincode, needs to be packaged with the chaincode

together by govendor. If you haven’t installed govendor, you can install it as below:

Install govendor:

go get -u -v github.com/kardianos/govendor

Execute in the main method directory:

govendor init

govendor add -tree github.com/BSNDA/ICH/sample/irita/consumers/fabric/crosschaincode

After execution, the vendor folder will be generated. For the last step, compress the

project and vendor folder together, then upload and deploy it in BSN portal.

Application Contract Example

GitHub: https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fabric/chaincode

8.3.3.2 Interchain Application Contract based on FISCO BCOS

The interchain consuming contracts based on iService with Solidity are applicable for the EVM

compatible application blockchain platform like Ethereum and FISCO BCOS.

Application Contracts Development Guide

IService Client: For convenience, the contract named iService Client is built to encapsulate the

interaction with the iService Consumer Proxy and handle logistics including event triggering,

https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fabric/chaincode

Blockchain-based Service Network User Manual

132

request validation and status maintaining, which helps improve development efficiency.

The iService Client source code can be found in the Example Contract.

1. Import iService Client

To use the iService Client, import the corresponding contract path. For example:

import ServiceClient.sol

Note: You can directly use the iService Client code as a part of the consuming contract.

2. Inherit iService Client

contract <consuming-contract-name> is iServiceClient {

}

3. Initiate the interchain service request

• Set the iService Consumer Proxy (i.e. iService Core Extension) contract address.

The contract address in BSN Testnet is

0xcdad7e31edb24fc5f7c1aaf9edb8b8640d2fe3ca

This can be performed by invoking the setIServiceConsumerProxy method inherited

from the iService Client. A constructor taking the iService Consumer Proxy address

can be used. E.g.

constructor(

address _iServiceConsumerProxy

)

public

{

setIServiceConsumerProxy(_iServiceConsumer);

}

• Implement the callback interface

When the iService Consumer Proxy receives the service response, the method

implementing the callback interface will be called to paginate the response to the

corresponding consuming contract.

The below is the callback interface signature.

function callback(

bytes32 _requestID,

string calldata _output

)

• Initiate iService invocation

The iService request can be sent by the sendIServiceRequest function in the iService

Client.

bytes32 memory requestID = sendIServiceRequest(

serviceName,

https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fiscobcos/iServiceClient

Blockchain-based Service Network User Manual

133

requestInput,

timeout,

address(this),

this.callback.selector

);

Note: Developers need to retrieve information related to the service from the iService

Market Ex deployed on the application chain for the interchain service invocation, such

as the service name and schemas of the input and output.

4. NFT Service Consuming Contract Example

The NFT service is provided by the NFT contract on the Ethereum Ropsten to create NFT

assets.

The definition of the NFT service is as follows:

 Service name：nft

 Service Input JSON Schema：

{

"type": "object",

"properties": {

"to": {

"description": "address to which the NFT will be minted",

"type": "string"

},

"amount_to_mint": {

"description": "amount of the NFT to be minted",

"type": "string"

},

"meta_id": {

"description": "meta id",

"type": "string"

},

"set_price": {

"description": "price in Ethereum Wei",

"type": "string"

},

"is_for_sale": {

"description": "whether or not the minted NFT is for sale",

"type": "boolean"

}

}

http://ropsten.etherscan.io/address/0x80f2a29e861a1888603b6bbd54453ee995c808ad

Blockchain-based Service Network User Manual

134

}

 Service Output JSON Schema：

{

"type": "object",

"properties": {

"nft_id": {

"description": "id of the minted NFT",

"type": "string"

}

}

}

Developers can develop contracts on application chains to implement to mint NFT

assets across chains.

Application Contract Example

GitHub:

https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fiscobcos/NFTServiceCon

sumer

8.3.4 Interchain Services based on Hyperledger Fabric

Application Contract Development Guide

1. Preparation:

Run the code below to obtain the BSN interchain consuming contract help package

(ICH.git). Currently, only the GO language version is supported but more versions will be

added later.

cd $GOPATH

 mkdir -p src/github.com/BSNDA && cd src/github.com/BSNDA

 git clone https://github.com/BSNDA/ICH.git

2. Initiate the interchain service request

After creating the Fabric chain code struct and invoke function, import below package:

 import (

 "github.com/BSNDA/ICH/sample/irita/consumers/fabric/crosschaincode"

)

Call the crosschaincode.CallService method in the invoke function using the parameters of

the method as follows:

• stub: shim.ChaincodeStubInterface

• serviceName: the interchain service name of permissioned chain is “cross_service”

• input: the input object for interchain service

• callbackCC: callback chaincode name

• callbackFcn: callback chaincode function name

• timeout: timeout

The input parameter varies according to the interchain service and type passed in. In the

Fabric service, the input structure is as follows:

https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fiscobcos/NFTServiceConsumer
https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fiscobcos/NFTServiceConsumer

Blockchain-based Service Network User Manual

135

type Input struct {

 ChainId uint64 `json:"chainId"`

 ChainCode string `json:"chainCode"`

 FunType string `json:"funType"`

 Args []string `json:"args"`

}

In the FISCO BCOS service, the input structure is as follows:

 type BcosInput struct {

 OptType string `json:"optType"`

 ChainID uint64 `json:"chainId"`

 ContractAddress string `json:"contractAddress"`

 CallData string `json:"callData"`

}

A unique request ID will be returned after successful invocation. Keep this value and use

it to determine the cross-chain results in the callback function.

3. Implement the callback interface：

After the cross-chain contract receives the service response from Fabric Relayer, the

callback method name and callback chaincode name passed in will be called to return the

service response. The first parameter of the call returns a JSON-formatted string. Below is

the service response structure:

type ServiceResponse struct {

 RequestId string `json:"requestID,omitempty"`

 ErrMsg string `json:"errMsg,omitempty"`

 Output string `json:"output,omitempty"`

 IcRequestId string `json:"icRequestID,omitempty"`

 }

Method crosschaincode.GetCallBackInfo() could be called to serialize the value. The

requestID is unique and can be used to conduct the business processing. Output is a

JSON-formatted string which is the returned value of the cross-chain response. Below is

the input data structure:

type InputData struct {

 Header interface{} `json:"header"`

 Body interface{} `json:"body"`

 }

Parameter “Body” is the output object for the service. In Fabric service, the input

structure is as follows:

 type Output struct {

 TxValidationCode int32 `json:"txValidationCode"`

 ChaincodeStatus int32 `json:"chaincodeStatus"`

 TxId string `json:"txId"`

 Payload string `json:"payload"`

Blockchain-based Service Network User Manual

136

}

In FISCO BCOS service, the output structure is as follows:

 type BcosOutput struct {

 Result string `json:"result,omitempty"`

 Status bool `json:"status,omitempty"`

 TxHash string `json:"tx_hash,omitempty"`

}

4. Pack the chaincode

ICH.git, which is imported by the chaincode, needs to be packaged with the chaincode

together by govendor. If you haven’t installed govendor, you can install it as below:

Install govendor:

 go get -u -v github.com/kardianos/govendor

Execute in the main method directory:

 govendor init

 govendor add -tree github.com/BSNDA/ICH/sample/irita/consumers/fabric/crosschaincode

After the execution, the vendor folder will be generated. For the last step, compress the

project and vendor folder together, then upload and deploy it in the BSN portal.

Application Contract Example

GitHub: https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fabric

8.3.5 Interchain Services based on FISCO BCOS

Application Contract Development Guide

IService Client: For convenience, the contract named iService Client is built to encapsulate the

interaction with the iService Consumer Proxy and handle logistics including event triggering,

request validation and status maintaining, which helps improve development efficiency.

The iService Client source code can be found in the Example Contract.

1. Import iService Client

To use the iService Client, import the corresponding contract path. For example:

import ServiceClient.sol

Note: You can directly use the iService Client code as a part of the consuming contract.

2. Inherit iService Client

contract <consuming-contract-name> is iServiceClient {

}

3. Initiate the interchain service request

• Set up the iService Consumer Proxy, that is, after the successful deployment of the

cross-chain contract in the portal, find the iServiceDelegator cross-chain proxy contract

https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fabric
https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fiscobcos/iServiceClient

Blockchain-based Service Network User Manual

137

address in the cross-chain information page.

This is done by calling setIServiceConsumerProxy(address

_iServiceConsumerProxy), a method inherited from iService Client, or by passing in

the contract constructor. E.g.

constructor(

address _iServiceConsumerProxy

)

public

{

setIServiceConsumerProxy(_iServiceConsumer);

}

• Implement the callback interface

When the iService Consumer Proxy receives the service response, the method

implementing the callback interface will be called to paginate the response to the

corresponding consuming contract.

Below is the callback interface:

function callback(

bytes32 _requestID,

string calldata _output

)

• Initiate iService invocation

The iService request can be sent by the sendIServiceRequest function in the iService

Client.

bytes32 memory requestID = sendIServiceRequest(

serviceName,

Blockchain-based Service Network User Manual

138

requestInput,

timeout,

address(this),

this.callback.selector

);

Note: Developers need to retrieve information related to the service from the iService

Market Ex deployed on the application chain for the interchain service invocation, such

as the service name and schemas of the input and output.

4. Fabric cross-chain call example

 Service name: cross_service

 Service Input JSON Schema：

{

 ChainId uint64 `json:"chainId"`

 ChainCode string `json:"chainCode"`

 FunType string `json:"funType"`

 Args []string `json:"args"`

}

 Service Output JSON Schema：

{

TxValidationCode int32 `json:"txValidationCode"`

ChaincodeStatus int32 `json:"chaincodeStatus"`

TxId string `json:"txId"`

Payload string `json:"payload"`

}

5. FISCO BCOS cross-chain call example

The definition of FISCO BCOS service is as follows:

 Service name: cross_service

 Service Input JSON Schema：

{

 OptType string `json:"optType"`

 ChainID uint64 `json:"chainId"`

 ContractAddress string `json:"contractAddress"`

 CallData string `json:"callData"`

}

 Service Output JSON Schema：

 {

Blockchain-based Service Network User Manual

139

 Result string `json:"result,omitempty"`

 Status bool `json:"status,omitempty"`

 TxHash string `json:"tx_hash,omitempty"`

}

Application Contract Example

GitHub: https://github.com/BSNDA/ICH/tree/main/sample/irita/consumers/fiscobcos

Blockchain-based Service Network User Manual

140

9 Account Management

In the My Account page, the user can view details of their card and transactions they performed

on the network. To work with My Account, follow these steps:

1. In the User Center menu, click the dropdown to reveal the list, in the menu list, click My

Account to display the page.

2. To update the user Card Information, click the Update card information to display the

My Credit Card page. The user will be redirected to the Stripe website. The BSN portal

can never see and does not store credit card information.

3. Update the card details as needed and click Update.

4. To search a bill in the My Bills section, enter or select the following:

• Bill Number - Enter the bill number if known

• Creation time - Select a start and end date

• Service Name - Enter a service name if known

• Status - Select from the options available in the dropdown

• Type of Bills - Select from the options available in the dropdown

• Click Query to display the bill information.

5. In the Bill list, under the Status and Action columns, the user can perform certain actions

including Pay and Details on each bill. To pay a bill, click Pay and to View a bill, click

Details.

Blockchain-based Service Network User Manual

141

10 Online Documentation

White Papers

Name Version Update Details

BSN Introduction White paper V1.05 February 5th,2020 PDF

BSN Technical White Paper V1.0.0 April 25th,2020 PDF

Site Documents

Name Version Update Details

User Manual 1.5.0 April 30th,2021 Online PDF

Fabric Examples 1.0.1 April 24th,2020 Github

FISCO BCOS Examples 1.0.1 April 24th,2020 Github

SDK Examples 1.0.1 April 24th,2020 Github

Permissioned Frameworks

Name Official Website Details

Hyperledger Fabric https://www.hyperledger.org/ Github Documentation

FISCO BCOS http://fisco-bcos.org/ Github Documentation

ConsenSys Quorum https://consensys.net/quorum/ Github Documentation

Public Chains

Name Official Website Details

Nervos https://www.nervos.org/ Github Documentation

NEO https://neo.org/ Github Documentation

ETH https://ethereum.org/ Github Documentation

Tezos https://tezos.com/ Github Documentation

EOS https://eos.io/ Github Documentation

IRISNET https://www.irisnet.org/ Github Documentation

dfuse-eos https://www.dfuse.io/en/home/?utm_source=BSN Github Documentation

Algorand https://algorand.foundation/ Github Documentation

https://global.bsnbase.com/static/tmpFile/BSNIntroductionWhitepaper.pdf
https://global.bsnbase.com/static/tmpFile/BSNTechnicalWhitePaper.pdf
https://bsnbase.io/static/tmpFile/bzsc/index.html
https://bsnbase.io/static/tmpFile/BSNUserManual.pdf
https://github.com/BSNDA/FabricBaseChaincode
https://github.com/BSNDA/FISCOBaseContract
https://github.com/BSNDA
https://www.hyperledger.org/
https://github.com/hyperledger/fabric/tree/v1.4.3
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
http://fisco-bcos.org/
https://github.com/FISCO-BCOS/FISCO-BCOS
https://fisco-bcos-documentation.readthedocs.io/en/latest/
https://consensys.net/quorum/
https://github.com/ConsenSys/quorum
https://docs.goquorum.consensys.net/en/stable/
https://www.nervos.org/
https://github.com/nervosnetwork
https://docs.nervos.org/
https://neo.org/
https://github.com/neo-project/neo
https://neo.org/dev
https://ethereum.org/
https://github.com/Ethereum
https://ethereum.org/en/developers
https://tezos.com/
https://tezos.gitlab.io/
https://developers.tezos.com/
https://eos.io/
https://github.com/EOSIO
https://developers.eos.io/
https://www.irisnet.org/
https://github.com/IRISNET
https://www.irisnet.org/docs
https://www.dfuse.io/en/home/?utm_source=BSN
https://github.com/dfuse-io/dfuse-eosio/?utm_source=BSN
https://docs.dfuse.io/?utm_source=BSN
https://algorand.foundation/
https://github.com/algorand
https://developer.algorand.org/docs/

Blockchain-based Service Network User Manual

142

Solana https://solana.com/ Github Documentation

ShareRing https://sharering.network/ Github Documentation

BTY https://www.bityuan.com/index Github Documentation

Oasis Network http://www.oasisprotocol.org Github Documentation

Polkadot https://polkadot.network/ Github Documentation

Casper https://casperlabs.io/ Github Documentation

Findora https://findora.org/ Github Documentation

Near https://near.org/ Github Documentation

https://solana.com/
https://github.com/solana-labs/solana
https://docs.solana.com/introduction
https://sharering.network/
https://github.com/ShareRing/Shareledger
https://sharering.network/resources/ShareRing+API+Overview.pdf
https://www.bityuan.com/index
https://github.com/bityuan/bityuan
https://chain.33.cn/document/142
http://www.oasisprotocol.org/
https://github.com/oasisprotocol
https://docs.oasis.dev/general/
https://polkadot.network/
https://github.com/paritytech/polkadot
https://substrate.dev/
https://casperlabs.io/
https://github.com/CasperLabs
https://docs.rs/casper-node/latest/casper_node/rpcs/index.html
https://findora.org/
https://github.com/findoraorg
https://api.findora.org/
https://near.org/
https://github.com/near
https://docs.near.org/

Blockchain-based Service Network User Manual

143

11 Contact Us

If you have any questions or find any errors in this manual, please contact us:

Customer service hotline: +86-400-071-8215 (workday: 08:00 - 17:30)

Email: support@bsnbase.com

Telegram BSN Support Group: https://t.me/bsnsupport

International Social Media:

mailto:support@bsnbase.com
https://t.me/bsnsupport

	1 BSN Introduction
	1.1 Brief Introduction
	1.2 BSN Services
	1.2.1 Permissioned Services
	1.2.2 Permissionless Services
	1.2.3 Interchain Services

	1.3 Terminologies

	2 Release Notes
	3 Quick Start
	3.1 Permissioned Blockchain
	3.2 Permissionless Blockchain
	3.3 Documentation

	4 Registration and Activation
	4.1 Registration
	4.2 Login
	4.3 Forgot Password

	5 Permissioned Services
	5.1 Overview
	5.2 BSN Keys and Certificates Mechanism
	5.2.1 BSN Keys and Certificates Mechanism
	5.2.2 Locally generate the DApp access key pair

	5.3 DApp Services Publication and Participation
	5.3.1 Overview
	5.3.2 DApp Services Publication
	5.3.2.1 Create a New DApp Service
	5.3.2.2 Upload chaincode package
	5.3.2.3 Define Service Functions and Roles
	5.3.2.4 Select the Public City Nodes to deploy the service
	5.3.2.5 Select Certificate Mode
	5.3.2.6 Pay bills and submit for approval

	5.3.3 DApp Services Management
	5.3.3.1 Invite participants
	5.3.3.2 Basic Information Editing
	5.3.3.3 Service Upgrade
	5.3.3.4 Configuration Upgrade
	5.3.3.5 Detail

	5.3.4 DApp Services Participation
	5.3.4.1 Apply for a Service
	5.3.4.2 Select Roles and City Nodes
	5.3.4.3 Apply Certificate Mode
	5.3.4.4 Submit for approval
	5.3.4.5 Approve a service
	5.3.4.6 Download and renew a certificate
	5.3.4.7 Configuration parameters for service access

	5.4 Off-BSN system Access Guide
	5.4.1 Overview
	5.4.2 BSN Smart Contract Package Requirements
	5.4.2.1 Hyperledger Fabric smart contract package requirements
	5.4.2.2 Hyperledger Fabric prebuilt smart contract package
	5.4.2.3 FISCO BCOS smart contract package requirements
	5.4.2.4 FISCO BCOS prebuilt smart contract package

	5.4.3 PCN Gateway Fabric API
	5.4.3.1 DApp Access Signature Algorithm
	5.4.3.2 Key and Certificate Modes
	5.4.3.3 Retrieving DApp information API
	5.4.3.4 User Registration API
	5.4.3.5 Key Trust Mode invoking chaincode API
	5.4.3.6 Public Key Upload Mode user certification registration
	5.4.3.7 Public Key Upload Mode invoking chaincode API
	5.4.3.8 Retrieving transaction information API
	5.4.3.9 Retrieving block information API
	5.4.3.10 Retrieving the newest ledger information API
	5.4.3.11 Registering chaincode event API
	5.4.3.12 Registering block event API
	5.4.3.13 Chaincode and block event query API
	5.4.3.14 Remove chaincode and block event API
	5.4.3.15 Chaincode and block event notification message API
	5.4.3.16 Transaction status description

	5.4.4 PCN gateway FISCO API
	5.4.4.1 DApp Access Signature Algorithm
	5.4.4.2 Key and Certificate Modes
	5.4.4.3 Retrieving DApp information API
	5.4.4.4 User Registration API
	5.4.4.5 Key Trust Mode Invoking Smart Contract API
	5.4.4.6 Public Key Upload Mode Invoking Smart Contract API
	5.4.4.7 Retrieving Transaction Receipt API
	5.4.4.8 Retrieving Transaction information API
	5.4.4.9 Retrieving Block Information API
	5.4.4.10 Retrieving DApp Block Height API
	5.4.4.11 Retrieving Total Count of DApp Transactions API
	5.4.4.12 Retrieving Total Count of Block Transactions API
	5.4.4.13 Registering Smart Contract Event API
	5.4.4.14 Smart Contract Event Query API
	5.4.4.15 Remove Smart Contract Event API
	5.4.4.16 Smart Contract Event Notification Message API
	5.4.4.17 Transaction Receipt Status

	5.5 Development SDK and Examples
	5.5.1 BSN Gateway SDK Example
	5.5.2 Off-BSN System Examples

	5.6 BSN Testnet Services
	5.6.1 Overview
	5.6.2 Permissioned DApp Service Publication
	5.6.3 Interchain Services on BSN Testnet

	6 Dedicated Node Services
	6.1 Overview
	6.2 Create Projects
	6.3 Edit Projects
	6.4 Delete Projects
	6.5 View Project Details
	6.6 Unsubscribe Projects
	6.7 Edit Authorized Account

	7 Permissionless Services
	7.1 Overview
	7.2 Select Plans
	7.3 Create and Manage Projects
	7.4 Off-BSN system Access Guide
	7.4.1 Overview
	7.4.2 Ethereum
	7.4.3 EOS
	7.4.4 Nervos
	7.4.5 NEO
	7.4.6 Tezos
	7.4.7 IRISnet
	7.4.8 dfuse-eos
	7.4.9 Solana
	7.4.10 ShareRing
	7.4.11 Algorand
	7.4.12 BTY
	7.4.13 Oasis Network
	7.4.14 Polkadot
	7.4.15 Casper
	7.4.16 Findora
	7.4.17 Near

	8 Interchain Services
	8.1 Interchain Service Management
	8.1.1 Open Interchain Services
	8.1.2 View Interchain Services
	8.1.3 Deactivation and Activation of Interchain Services

	8.2 Interchain Services based on Poly Enterprise
	8.2.1 Overview
	8.2.2 Interchain Services based on Hyperledger Fabric
	8.2.2.1 Application Contract Development Guide in BSN production environment
	8.2.2.2 Application Contract Development Guide in BSN Testnet
	8.2.2.3 Demo Contract Example

	8.2.3 Interchain Services based on FISCO BCOS
	8.2.3.1 Application Contract Development Guide in BSN production environment
	8.2.3.2 Application Contract Development Guide in BSN Testnet
	8.2.3.3 Demo Contract Example

	8.2.4 Interchain Services based on Ethereum Ropsten
	8.2.5 Interchain Services based on Neo Testnet

	8.3 Interchain Services based on IRITA
	8.3.1 Overview
	8.3.2 Interchain Architecture based on IRITA
	8.3.3 Interchain Services in BSN Testnet
	8.3.3.1 Interchain Application Contract based on Fabric
	8.3.3.2 Interchain Application Contract based on FISCO BCOS

	8.3.4 Interchain Services based on Hyperledger Fabric
	8.3.5 Interchain Services based on FISCO BCOS

	9 Account Management
	10 Online Documentation
	11 Contact Us

